What is the Transpose Operation?
Jon Claerbout

ABSTRACT

Geophysical problems generally involve linear operators. Optimization theory
demands the transpose to these operators. Examples drawn from NMO, migration, and
related areas show that computation of the transpose is usually a straightforward
adjunct to the computation itself. An operator may represent only an approximation to
reality. Never-the-less, for use in optimization, the computed transpose should be, and
generally can be, the exact transpose (within machine precision) of the approximate
operator. The transpose is also useful because it is often a practical approximation to
the inverse. For example, Kirchhoff migration is really the transpose to Kirchhoff model-
ing, not the ‘nverse. Also, the transpose to convolving with a filter response is
crosscorrelating with the response. So the transpose isn’t the inverse filter, but it does
subtract all the phase. The transpose to NMO is much like inverse NMO. The tran-
spose removes all the time shift. NMO itself is trivially invertible when nearest neighbor
interpolation is used. One-dimensional stretching deformations, such as NMO, that are

done by linear interpolation are easily invertible by means of the tridiagonal solver.

INTRODUCTION

In geophysics we have a long history of optimization experience with the convolu-
tional filtering operator. Recently, Thorson [1984] introduced optimization to slant stack
and velocity stack operators. Nolet [1985] introduced sophisticated inversion theory to
the tomographic operator. At SEP we are introducing optimization theory to applica-
tions Involving NMO, migration, and various kindred operators. A companion paper
simultaneously estimates pre- and post-NMO deconvolution filters by applying optimiza-

tion theory to a physical problem with three operators, NMO, filtering, and spherical

SEP-42
113

Claerbout What is the transpose?

divergence. Rocca [1982] showed that the midpoint axis can be interpolated by dip
moveout operators. Ronen is developing Rocca’s theory and may discover that the way

to get optimum answers is with optimization theory.

Generally, geophysical theory involves many operators, which may be composited
to model a given data set. Inverting the data to a model we need the transpose to the
composite operator. This paper illustrates, by means of many examples, how the compo-

site transpose should be computed.

Matrix multiply

if not transpose
then erase y
if transpose
then erase x
doiy =1, ny {
doix =1, nx {
if not transpose
y(iy) = y(iy) + b(iy,ix) * x(ix)
if transpose
x(ix) = x(ix) + b(iy,ix) * y(iy)
Iy

Transient convolution

doix = 1, nx {
doib =1, nb {
iy =ix +1b-1
if not transpose
y(iy) = y(iy) + b(ib) * x(ix)
if transpose

x(ix) = x(ix) + b(ib) * y(iy)
1}

DEFORMATIONS

Interpolation, nearest neighbor

Let data z, == x be resampled about 50% more densely with a crude nearest

neighbor scheme denoted by

x = Bx (1)
where

r 7

1000

0100

0100

B = loo1o0

0001

114 0001

Claerbout What is the transpose?

Let us multiply the resampled data x by the transposed resampling operator BT and

see what we get.
x = BT x = BT Bx (2)

We see that the result x has the same number of components as the original data x,

but it is not exactly equal to the original data. The matrix BT B is the diagonal

matrix

BT B =—

o O O =
o O N O
o = O O
NS OO

To recover the original data we need to divide by this diagonal matrix.

x = (BT By'x (4a)
x = (BT B)!BT x (4b)
x = (BT B)!BT Bx (4c)

Curiously, (4b) looks like a familiar equation from least squares theory. Indeed we now
understand a theoretical basis for why a transpose operator is often an approximate

inverse. It happens in proportion to the diagonal dominance of BT B.

NMO nearest neighbor

NMO, transpose NMO, and inverse NMO by nearest neighbor.
transp=0: zz(iz) = [NMO] tt(it)

transp=1: tt(it) = [NMO transpose| zz(iz)

transp=2: tt(it) = [NMO inverse] zz(iz)

subroutine nmolix(transp, slow, x, t0, dt, nt, tt, zz)
real slow(nt), x, t0, dt, tt(nt), zz(nt), count(4096)
integer transp, it, nt, iz

real t, x, z, Xs, arg

if(transp == 0)
do iz = 1,nt
zz(iz) = 0.0
else
do it = 1,nt {
tt (it) = 0.0

count(it) = 0.0

SEP-42
115

Claerbout What is the transpose?

z = t0 + nt * dt
t=2z2
doiz =nt, 1,-1 {
xs = x * slow(iz)
arg =z * z + xs * xs
next line replaceable by: t = sqrt (arg)
t = (arg +t*t) / (t +t)
it — 0.5 + (t - t0) / dt
if (it <=nt) {
if(transp ==
zz(iz) = zz(iz) + tt(it)
else {
tt(it) = tt(it) + zz(iz)
count(it) = count(it) + 1.

}

z=1z-dt
}

if(transp === 2)
do it = 1, nt

if(count(it) !== 0.0)
tt(it) = tt(it) / count(it)
return; end

NMO with linear interpolation

The NMO transformation is representable as a square matrix, say B. The
matrix B is a (z, ¢)-plane containing all zeros except an interpolation operator cen-
tered along the hyperbolic (z, t)-trajectory v2t? — 2422 Linear interpolation implies
that the matrix B is a two-band matrix (like a bi-diagonal matrix). Thus BT B is
tridiagonal. So if sampling everywhere stretches, the original data can be recovered by
solving a tridiagonal system. This idea can be used to program an invertible NMO or

trace interpolation.

Using the program below, a field profile was NMOed and then inverse NMOed.
The result was then plotted upon the original profile in figure 1. The processed profile is
not distinguishable from the original except near the direct arrival. The direct arrival

was evidently moved out to before t = 0 so it was not recoverable.

Let T = NMOT NMO denote the symmetric tridiagonal matrix constructed in
the program below. Then the pseudoinverse is T™' NMO T . The transpose of the pseu-
doinverse, namely NMO T7! which is also the pseudoinverse of the transpose, is also
an optional output. Since NMO is nearly a unitary operation, you might wonder how

NMO compares to NMO T7!. An example of the two plotted on top of each other is in

SEP-42
116

Claerbout What is the transpose?

Moy
; A WWAANN AN
S rpramp
$ s R
5 WMMWM/V\/M/\/\W\/MW

VRN

0.2 O.4 0.6 0.8 1.2

FIG. 1. Field profile d plotted on top of NMO™ NMO d. The two overlay except
near the first arrival.

figure 2.

The program below applies an NMO type of operator to a single trace. Notice that
tables of interpolation coefficient are constructed and this construction amounts to about
80% of the computational effort. When many traces of the same offset will be (inverse)-

(transpose)-NMOed these tables my be reused, thereby saving a factor of five.

SEP-42
117

Claerbout What s the transpose?

- o AA AN NN NN
. B ans R CRN SV VAV VN AV VAVAY (WAVITVATAVASS
" AN AN \A/\/\N s
e
. VY WV\/W\/\N\M
<
QJ

U.2 O.4 0.6 0.8 1 le2
FIG. 2. NMOed field profle NMO d plotted on top of (NMOT)!'d =

(NMOHT d = NMO (NMOT NMO)Y'd . The two differ significantly at wide offsets
near the first arrival. They also differ noticibly near vertical incidence.

normal moveout a single trace.
NMO, transpose NMO, and inverse NMO by linear interpolation.

tra=0 inv=0:2zz(iz) = [NMO] tt(it)
tra=1 inv=0:tt(it) = [NMO transpose| 22(12)
tra=0 inv=1:tt(it) = [NMO inverse| zz(1z)

tra=1 inv=1:22(iz) = [NMO inverse transpose| tt(it)

SEP-42
118

Claerbout What s the transpose?

subroutine nmo2ix(tra, inv, mktab, slow, x, t0, dt, nt, tt, zz,
itab, bb, cc, w0, wl) # work space
real slow(nt), x, t0, dt, tt(nt), zz(nt),
t, X, z, tm, tpart, xs, arg,
bb(nt), cc(nt), wO(nt), wil(nt), ts(4096); automatic ts
integer tra, inv, it, nt, iz, mktab, itab(nt)

f(tra == inv)
do iz == 1, nt
zz(iz) = 0.
else
do it = 1, nt
tt(it) = O.
if(inv ==1) # initialize tridiagonal coefs.
doit =1, nt {
ce(it) = 0.
bb(it) = 0.
}
if(mktab I=0) { # tabulate pointers and weights.
z = t0 + nt * dt
t=1z

doiz ==nt, 1,-1 {

xs = x * slow(iz)

arg =z * 7z + xs * xs

next line replaceable by: t = sqrt (arg)

t=(arg+t*t)/(t+1t)

it = (t - t0) / dt + .00001

tm = t0 + 1t * dt

tpart =t - tm

wO0(iz) = (dt - tpart) / dt

wi{iz) = 1. - w0(iz)

itab(iz) = 0

if (it+1 <=nt) { # interior
itab(iz) =it
bb(it) = bb(it) + wO(iz) * wO(iz)
ce(it) = ce(it) + wil(iz) * wO(iz)
bb(it+1) = bb(it+1) + wl(iz) * wl(iz)

else if (it <=nt) { # at edge
itab(iz) — - it
bb(it) == bb(it) + w0(iz) * wO(iz)
ic(it) = ce(it) + wl(iz) * wO(iz)

else # off end
itab(iz) = 0
=z - dt

}

SEP-42
119

What 1s the transpose?

Claerbout
do it == 1, nt # avoid destruction of input.
ts(it) = tt(it)
f(tra===1 & inv==1){ # transpose pseudoinverse
do it =1, nt
if(bb(it) == 0.0) {
bb(it) = 1.0
ts(it) = 0.0
call vtris(nt, cc, bb, cc, ts, ts) # vtris allows overlay.
}
if(tra == inv) { # Operator itself or transpose pseudoinverse
do iz == 1, nt {
it = itab(iz)
if(it > 0) {
zz(iz) = zz(iz) + wO(iz) * ts(it)
zz(iz) = zz(iz) + wl(iz) * ts(it+1)
}
else if(it < 0){
it = -it
z7(1z) = zz(iz) 4 wO(iz) * ts(it)
}
¥
else { # transpose or inverse

do iz =1, nt {
it = itab(iz)
if(it > 0) {
ts(it) = ts(it) + wO(iz) * zz(iz)
ts(it+1) = ts(it+1) + wl(iz) * zz(iz)

.
else if(it < 0){
it = -it
ts(it) = ts(it) + wO(iz) * zz(iz)

}
}
if(tra==0 & inv ==1){ # pseudoinverse
do it = 1, nt
if(bb(it) == 0.0) {
bb(it) = 1.0
ts(it) = 0.0
call vtris(nt, cc, bb, cc, ts, tt)
}
else
do it = 1, nt
tt(it) = ts(it)
return; end

SEP-42
120

Claerbout What is the transpose?

You may wonder why the program bothers to distinguish time truncation at the
first linear interpolation coefficient from truncation at the second. I found the simpler
truncation logic often gave zero division in the tridiagonal solver, thereby preventing the
inversion. The matrix A is almost square, depending how we do the truncation. It
seems that if we plan to invert A T A, we should truncate the last column of A

rather than the last row.

variable coefficient tridiagonal solver adapted from FGDP.

FGDP: C(K) * T(K-1) + B(K) * T(K) + A(K) * T(K+1) = D(K)
here: ¢(K-1) * T(K-1) + B(K) * T(K) + A(K) * T(K+1) = D(K)
So for a symmetric matrix: ¢(K) = A(K)

subroutine vtris(n, a, b, ¢, d, t)

integer n, k

real a(n), b(n), c(n), t(n), d(n), e(1024), {(1024)
e(1) = - a(1) / b(1)

dok =2, n-1
e(k) = - a(k) / (b(k) + c(k-1) * e(k-1))
1;1(1)k= %(1) / b(1)
f(k) = ((k) - e(k-1) * f(k-1)) / (b(K) + e{ke1) * e(k-1))
t(n) = f(n)
dok =mn-1,1,-1
t(k) = e(k) * t(k-+1) + f(k)
return; end

Resampling in offset space

If a CDP gather is to be resampled in offset, the interpolation should be along
hyperbolic trajectories. (The hyperbola varies with 7 according to v (7)). I use nearest
neighbor on the ¢-axis and linear interpolation on the z -axis. Interpolation along hyper-
bolic trajectories is a multidimensional transformation. Since we don’t have a multidi-
mensional tridiagonal simultaneous equation solver, we don’t have an exact Inverse to
the interpolation along hyperbolic trajectories. If you want an invertible transformation,

you should first use “nmo”’, then laterally stretch with “midpoint”.

Radial trace

The basic equations for radial trace transformation are:

2= 2 4a? oo)

u = z/7 (6)

t2 = 21+’ /o(r)) (7)
SEP-42

121

Claerbout What is the transpose?

Below is the central part of my program. The inverse is not everywhere exact when

v = v (7).

do iu=1,nu {
u = u0 + iu*du
tanang == u * slow(iu)

cosi = sqrt(1. + tanang * tanang)
do iz=1,nz {

z = z0 + iz*dz

Xx=u%*zy

ix =(x-x0)/dx + .5
t =z * cosi
it = (t-t0) /dt + .5
flo<ix & ix <=nx & 0<it & it <=nt){
if(transp == 0)
uu(iz,iv) = uu(iz,iv) + xx(it,ix)
else {
xx(it,ix) = xx(it,ix) + uu(iz,iu)
count(it,ix) = count(it,ix) + 1.

}

Since the program is only invertible where stretching, I usually define dr (=dz)

somewhat smaller than dt.

Typical case of deformation transformation

Below is a sketch of a generalized deformation transformation, its transpose, and a
pseudoinverse based on getting proper scaling of the diagonal of A7 A .

if not transpose
then erase y
if transpose
then erase x

Loops over output space i-indices {
input j-indices as functions of i-indices
Summation or interpolation loops {
if j-index on data {
value = any function of indices
if not transpose
y(i1,i2...) = y(il,i2...) + value * x(j1,j2...)
if transpose
x(j1,j2...) = x(j1,j2...) + value * y(il,i2...)
sum(j1,j2...) = sum(j1,j2) + value

188

SEP-42
122

Claerbout What ¢s the transpose?

if pseudo inverse
loop over j-space
if sum(j1,j2,...) % 0.0
x(j1,j2,...) = x(j1,j2,...) / sum(j1,j2,...)

At a later time I will want to figure out how to get the best unitary approximations
by row and column scaling. We should study to see how to make a tridiagonal approxi-

mation for any one-dimensional pseudoinverse.

Inner product tests

Paige and Saunders in their paper on optimization point out that their program
fails to converge when the given operator and its given transpose are not really tran-
sposes of each other. I run so few iterations this test was never invoked. I asked Stew
Levin for a test that an operator really is the transpose of another operator. He sug-
gested y(Az)= (yA)z. For example, 2 could be data from the South Atlantic and
y could be data from the North Pacific. Then Az could be moveout corrected South
Atlantic data, and yA would be inverse moveout corrected North Pacific data. The
following lines were output from my test program:

"nmol”
dotprod=-55845879201923072.
dotprod=-55845866317021184.

» nmo2”
dotprod=-50359445028339712.
dotprod=-50359483683045376.

?radial”
dotprod=63642576284024832.
dotprod=63642309996052480.

”midpoint”
dotprod=-48595940046536704.
dotprod=-48595622218956800.

? offset”
dotprod=—-48774632160886784.
dotprod=-48774262793699328.

So we see the departures occur in the sixth significant place.

I found these dot product tests shook a lot of bugs out of my header processing
procedures. Be aware that the NMO process depends on the geometry of the data lay-
out, so the layout better be the same in the North Pacific as it is in the South Atlantic.
It is noteworthy that a matrix need not be square. The last three processes tested above
produced more output than they had input. The test also shook some bugs out of my

scientific programs so I plan to continue to make the test on each process I program.

SEP-42
123

Claerbout What is the transpose?

Stolt migration and diffraction

NMO is based on the quadratic equation v?¢%?= 2%+ z2. Stolt’s migration, he
noted in SEP 20, is also based on a quadratic equation w?®/v? = k,2+ k2 So Stolt

migration is NMO in the Fourier domain.
Stolt = FT — NMO — FT7! (8)

A property of matrix transposes is (A B C)T = 0T BT AT, We know the transpose
of NMO, and we know that the (conjugate) transpose of Fourier transform is inverse

Fourier transform. So
StoltT = FT — NMOT — FT™ (9)

So we see the transpose to Stolt modeling is Stolt migration, provided that you forget

the Jacobian, as I usually do.

Of course the NMO program must work with complex values. I wonder if there are
any time-domain applications for the complex-valued NMO program. Some of the end
effects and interpolation problems are challenging. Bill Harlan showed that doing better
than linear interpolation saves need of a lot of zero padding. On the other hand, linear
interpolation is nicely invertible by the tridiagonal system. I guess we’ll have to dust off

the general band matrix solver.

MIGRATION AND DIFFRACTION

The linear interpolation within a deformation transformation is a weighted sum
over two points. In Kirchhoff migration and diffraction, the summation is over more

than two points.

The transpose to summation is taking a point and spreading it around, actually,
adding it atop of what is already out there. I’ll refer to the transpose of summation as

“spraying’’.

Kirchhoff modeling and migration.

Ignoring velocity and “if index off data’ tests, Kirchhoff modeling and migration is:

SEP-42
124

Claerbout What is the transpose?

do iz = 1,nz

do ih = —25, 25
it = sqrt(iz*iz + ih*ih)
do iy = 1,ny
ig =1y + ih

if not transpose
z7(iz,iy) = zz(iz,ly) + tt(it,ig) # summing
if transpose
tt(it,ig) = tt(it,ig) + zz(iz,ly) #F spraying
The trick to making the Kirchhoff fast is to move the y-loop to the inside of the square

root and interpolation overheads.

Gazdag migration and diffraction

The Gazdag algorithm is the most complicated one considered so far. Below you
need to check two things, is it really the Gazdag modeling and migration program? Are

the operations really the transposes?

A property of matrix transposes is (A B C)T = CT BT AT . Interpreted in
terms of layers, this means if the operator goes from the earth’s surface to its interior,
then the transpose operator goes from the interior to the surface. Observe in the pro-
gram sketch below that the loops run in opposite directions, the inverse Fourier

transform is its transpose, and the order of FT, layer , and source are reversed in the

transpose.
if not transpose l.e. migration
erase all of Image (z, k)
U(w, k,) = FT2D [u(t,z)
for 2 =0, 2 < 2,y 2 =2 +Az
call source
call layer
image (2, ¢) = FT(Image (2, k,)]
if transpose 1.e. diffraction

erase all of U(w, k)

for 2 = zpu, £ >0, 2 = 2-Az
Image (2, k,) = FT [image (z, 7))
call layer
call source

u(t,z) = IFT2D [U(w, k,)

return; end

The layer subroutine resembles a diagonal matrix multiply.

SEP-42
125

Claerbout What is the transpose?

subroutine layer
for all w and all &,
C = exp(-Az (-iw?/vi+k?)
if not transpose
Ulw, k) = Uw, k) * C
* C

if transpose
U((.u, kz) - U(w: kz)
return; end

The source subroutine next displays a typical transpose character. In modeling, the
image, being a point in time, is sprayed out into all frequencies. In migration, the image
point is created by summing all frequencies.

subroutine source
for all w and all £k,
if not transpose
Image (z, k,) = Image (2, k) + U(w, k)
if transpose
Ulw, k) = Ul k) + Image (=, k,)
return; end

The above program sketch looks correct, but no real program for it has yet gone through
the (yA)z =y (Az) test.

Finite difference wave extrapolation, (w, z)

Let us see what needs to be done to the program in IEI p 105 to incorporate the
transpose operator. First, the velocity is a constant function of z so it isn’t absolutely

necessary to reverse the z-loop. Second, the program contains the three lines

do 1x=2,nx-1
cd(ix) = aa*q(ix+1) + (1-2*aa)*q(ix) + aa*q(ix)

call ctris

In the transpose operation, you expect to swap the call and the do loop. But here, I

believe everything is a power of a tridiagonal matrix, so it all commutes.

Another area of discrepancy between the forward and the inverse program arises
with the side boundaries. I believe Dave Hale’s coding of the side boundaries, on page
106 translates nicely to its conjugate, so it should work in either the forward or the tran-
Spose program.

It seems the principle change to get the conjugate transpose program is to replace

(44 ba)

aa’’ by its complex conjugate, which makes the waves go the other way.

SEP-42
126

Claerbout What is the transpose?

Integration

The causal integration operator is like a matrix with ones below the diagonal and
zeros above. So the transpose to causal integration is anti-causal integration. The Z-

transform expression for causal integration is (1 + pZ)/(1 — pZ). The transpose opera-
toris (1+p/Z)/(1-p/Z)

Recursive dip filters

Recursive dip filters are phaseless in z, so I guess the 2-axis spatial filters are their
own transpose, though I will want to check the side boundaries in my program. Tran-

sposed dip filters must do their time-domain recursion anticausally.

More exercises for the reader

15° time-domaln migration
45° migration
Bullet-proof migration

Migration with absorbing sides

AR A

dip moveout.

Programming style

As a matter of programming style, an objection has been raised to putting an ““if
transpose’” test in the inner loop of a program because it increases computational cost
somewhat. On the other hand, the advantage of having one program, compared to hav-
ing two is that improvements to the model are immediately seen in the transpose and
vice versa. There is no need to update two separate programs and assure their contin-

ued consistency. A compromise is to move the ‘“if transpose’ back up one loop.

CONCLUSION

It seems to be a straightforward matter to compute the transpose operation within
the same program that applies the operator itself. By doing both operator and transpose
in the same program, the same approximations and truncations are made and the

chances are excellent that the transpose will be exact within machine precision.

Theoretical studies that determine an analytic representation for the transpose are

not required, but such theoretical results might help us define operators whose transpose

SEP-42
127

Claerbout What s the transpose?

more nearly approximates their pseudoinverse.

REFERENCES

Bolondi, G., Loinger, E., and Rocca, F., 1982, Offset continuation of seismic sections:
Geophys. Prosp. 30, 813-828.

Claerbout, J.F., 1985, Imaging the earth’s interior: Blackwell Scientific Publications.

Luenberger, David G, 1973, Introduction to linear and nonlinear programming, Addison-
Wesley

Nolet, G., 1983, Resolution analysis in large scale tomographic systems: lecture given at
Stanford University

Nolet, G., 1985, Solving or resolving inadequate and noisy tomographic systems: submit-
ted to J. Comp. Phys.

Paige, C.C. and Michael A. Saunders, 1982 LSQR: An algorithm for sparse linear equa-
tions and sparse least squares, ACM transactions on Mathematical Software, vol 8,
no 1, p 43-71

Paige, C.C. and Michael A. Saunders, 1982 Algorithm 583, LSQR: Sparse linear equa-
tions and least squares problems, ACM transactions on Mathematical Software, vol
8 no 2, p 195-209

Thorson, J.R., 1984, Velocity and slant stack inversion: PhD thesis, Stanford University.
Also published as SEP-41 and submitted to Geophysics, in press.

SEP-42
128

