Newton trace balancing

Stewart A. Levin

INTRODUCTION
In the last SEP report (SEP-41) I began a study of surface-consistent

deconvolution in which I opted not to follow the classical route of transforming
measurements to a log-linear model. Instead I'm fitting measurements directly to
the convolutional or multiplicative model from which the log-linear model was
derived. The reason for this is to bypass the problems of unwrapping complex
phase and the distortion of error statistics one runs into when taking logarithms.

The prototype [I’ll tackle in this article is the trace balancing problem.
Given a number representing, say, the rms amplitude of each trace, I want to
decompose these amplitudes in a surface-consistent fashion. This was done by
Taner and Koehler (1981) with the log-linear model.

NEWTON FACTOR ANALYSIS

The simplest trace balancing problem is factor analysis or analysis of vari-
ance (ANOVA). This may be posed as follows.

Given a rectangular array a;j, t=1,m, j=1,n I want to find vectors s

and g¢; to minimize
lA -SGT || (1)

where the Froebenius norm || |y of a matrix is defined by
, Ve
| M fe — [ 2% mg ] . @
i

To save some factors of —1 and 2, I'll rewrite the problem as

max J = -1/2 Y (a,-j - sigj)2 (3)
ij

and set derivatives of J equal to zero:

aJ

0 = 7, = Zj] (a;j — $i9;)9; (4)
oJ

0 = _ L sa)s ) 5
39,- %3 (a’u $i 9; )Sz ( )
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For future reference define vector functions

aJ

J = 6

s = 2 ©
aJ

J =

e 3y, (7)

From (4) and (5) the answer to this rectangular fit satisfies

AG = )\, 8 (8)
and

ATS = @ (9)
with N, = & TG and N, = STS. Applying A7 to (8) and substituting in

(9) yields
ATAaG = X\, G . (10)

Similarly
AATS = X\ )\, 8 . (11)

Thus G and S are eigenvectors (with the same eigenvalue) of AT A and AAT
respectively. Employing the singular value decomposition (SVD)

A = PAQT , (12)

the solution is to choose S as the column of P corresponding to the largest

singular value on the diagonal of A and G as the corresponding column of Q.

Assume now that we didn’t recognize the structure of (4) and (5). We
could still try to solve this using Newton’s root-scarch method to find zero(s) of
the vector function F = (Jg,Jgz). To apply Newton’s method we’ll need the
(symmetric) derivative of this function:

-cTaqr, A-25Gq7T
DF = (13)
AT_2GgsT -sTs 1

n

Newton’s iteration takes a starting guess S,, G, and successively computes incre-
ments 85, 6G according to

68
until convergence is reached.

A difficulty arises in performing (14) for this problem because the matrix
DF is singular at the desired solution. This is a direct consequence of the

ambiguity in S and G where S may be multiplied by an arbitrary constant
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and G divided by the same constant without changing the value of the objec-
tive function J. To handle this we’ll need a constraint. Requiring

IS = 1a] (15)
turns out to be a good choice. (More on this below.)

Let’s turn now to finding a good starting guess S, and G, . This is a
necessity because Newton’s method both converges rapidly (second order) near
the root and diverges rapidly when too far from the root. To avoid the latter
disaster, I'll use a continuation scheme devised by Herbert Keller of CalTech
(Keller 1978). The idea is to concoct synthetic data for which we do have a
good starting guess and slowly perturb this synthetic and the starting guess
until it agrees with the data we’re really interested in.

So I start with an easier problem for which I know an answer. If I
replace A by a constant matrix A, say the average of the elements of A,

such an answer is immediate:

s, = Y@ /m
- . (16)
g, = +¥7%m /n

Now TI'll introduce an auxiliary parameter 0<o<1, called a homotopy parameter,

and try to fit S and G to the linear combination
cA + (l1-0)A . (17)

Then the partial derivatives of F with respect to o are given by

0Jg _
e — 2 (u; - @)y, (18)
J
and
dJq .
3. E (a; — @)s; . (19)
]

At 0 = 0 expand F about S,, G,

65,
to determine that an appropriate correction, or homotopy step, is given by
65,
DF 6Go — —FU 50- . (21)
In practice one starts with o = 1 and decreases it only if Newton’s method

doesn’t converge in a few iterations.
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What problems do we face? I've already mentioned one: the ambiguity in
S and G. This implies that DF (13) is rank deficient (by one) at the desired

solution. ~ For this reason a modified inverse, incorporating constraint (15), will
be needed.

Another problem is brought to light by our initial eigenvalue analysis -
there are multiple local maxima of J, one for each eigenvalue, with the global
maximum associated with the largest eigenvalue in the SVD decomposition (12).
Fortunately our choice of simple problem A has at least started us out with
the largest eigenvalue solution. Indeed all other eigenvalues are zero. However
as we Increase ¢ we might encounter the situation depicted below

0 a i
where the largest eigenvalue at ¢ = 1 corresponds to one of the eigenvalues at
o = 0. C’est la vie. (It’s possible, though expensive, to track all of the zero
eigenvalue solutions from o = 0 as well)

There are a number of ways to deal with the rank deficiency problem.
The way I've chosen is to augment the problem F = 0 with the additional

constraint (normalization) condition (15). Writing the normalization function as

N(S,G) = 0 , (22)
we get the augmented derivative matrix
Fg  Fg
Ny N (23)
where for constraint (15) the new bottom row is
Ng — sT
Ng _ QT (24)

and the right hand sides of (14) are (21) augmented with a corresponding zero
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in the last position. Keller gives conditions under which this augmented prob-
lem has a solution. Basically they say that the constraint should be consistent
with the unconstrained equations; more technically, the RHS must satisfy a sol-
vability condition.

To understand the nature of this solvability condition, recall that the homo-
topy step (21) is really a question of tracking an eigenvector/eigenvalue away
from ¢ = 0. Let’s review how this is done using perturbations methods.

Suppose we have

o) X (o) = Xo) X(o) (25)
with I' symmetric and some known solution at ¢ = 0. We want to estimate
X (o) and M\o) to first order in o. Write

I'(o) = roy + o0 + 0(? (26)
X (o) — X(0) + oX'(0) + 0() (27)
o) = X(0) + oX (0) + 0 (0% (28)

to first order. Substituting these into (25), one can cancel the constant terms

and divide out o to get
I'X +4TX'" = XNX' + \MX (29)
or
r-NX" = -I-N)X . (30)

Since N is an eigenvalue of I' and X is the corresponding eigenvector, X7
times the left hand side of (30) is identically zero, and so (I' ~ N\)X' must be
orthogonal to X. Thus we have a solvability condition that

XTI -»)x = o (31)
or

X'rrx = N XxTx (32)
whence

N o= XTrrx/xTx . (33)

Using this value of N , X' is determined only up to some multiple of X.
To fix this multiple we impose a constraint condition such as XTX = 1
which makes

XTxr = o (34)
and there will be no component of X in X' .

Let’s look mnow for equivalent solvability condition(s) for our problem.
Recall equation (21)
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58,
DF| s | = -F,é0 i (21)

For this equation to have a solution, the right hand side will have to be
orthogonal to the null space of DF (technically DF transpose.) For this factor
analysis problem there is only free scaling parameter and so in this case the
null space has dimension 1. Let @ be an element of this null space. Then

our solvability condition is
QTF, = o . (35)

What is @? Here I'll make use of the nature of the ambiguity in the solu-
tion.  This ambiguity says that if (S, G) is a solution so is (vS5,47'G).
Linearizing about v = 1, we find

o - [ .

So to solve (21) we need

oA S
Fol_al = 0O . (37)
From (18) and (19) this becomes

0 = X (a4 - @)g;jsi - 3 (a; - @)s;g; ; (38)

1) )
which is an identity. Solvability condition (37) is thus verified for the homo-
topy step (21) and the step is determined up to a multiple of (S, - G). Dif-

ferentiating constraint condition (15) produces
5Tss - @Tsa = 0 (39)
which is (34) with X = @ and X' =(65,6G). Therefore my choice of con-

straint condition (15) makes the aforementioned multiple zero (i.e. a minimum

norm step) which is why I said it was a good choice.

The vector (S, - G) is also orthogonal to the RHS of (14) for
STAG -6Tas) - aT(AS -5T5@)
= STAG - GTGSTS - ¢TAs + sTsaTaq (40)
= 0
since all terms are scalars and so equal to their transposes.
In fact, DF is not necessarily rank deficient when computing the Newton
step with (14). The deficiency appears only at a solution of (4) and (5).
Numerically, however, we must consider DF singular in a neighborhood of the

desired solution. Steps taken to handle the singularity in the homotopy step
(21) should be equally applicable to the Newton iteration (14).
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So, how do I actually solve (21) or (14)? With the constraint method pre-
viously outlined, I set up an m+n+1 by m-+n DF matrix with the bottom
row QT. I also append a zero to the bottom of the RHS vectors as well.
These are then input to subroutine GOLUB (QR factorization, see FGDP p.
116-119) to get the desired minimum norm, least squares solution. To be con-
servative, I then renormalize S + 6S and G + 8G by scaling them inversely so
that (15) holds.

Using Cleve Moler’s interactive mathematical program (matlab), I ran a test
case with a 4 by 7 array of random numbers uniformly distributed between O
and 1 as input. After one homotopy step with do = 1, the first Newton step

matched the correct (SVD) answer to better than five significant figures.

TRACE BALANCING: WHEN THE DATA AIN’T THERE
A typical seismic survey doesn’t record a trace for every shot and receiver
combination. For trace balancing this means we have only a sparse subset of
the full matrix A from which to estimate the factors S and G. So suppose
we’re given amplitudes a;; for (¢,7) € Q@ C [I, m]|X[l,n]. As before I want
to solve the least squares problem

max J = -1/2 Y, (a; - s; g]-)2 . (41)
Q

Define 2; as the set of (¢,7) in Q for ¢ fixed and similarly for (1;. The

partial derivatives of J are

aJ
5. — 2 (a = sigj)y; (42)
Si jeﬂi

and
aJ
5 = Y (a5 - s;9j)si . (43)
9; i€q;

Again T’ll use Newton’s method to search for the zero of this vector function
F = (Jg,Jg) and so I'll want the derivative of F as well. This may be

written 1n the block matrix form as
diag (-3 ¢;*) (A - 2567 )]q
Ql
(AT - 2657 )|q diag(-Y s?)
QJ

where the restriction to {2 means to use zero when (i7,7) ¢ Q.

S and G are still at best determined only up to a scale factor. Il
resolve the scaling by again requiring
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IS = lal ’ (45)

or in differential form,

[ST,—GT] [(:Z] = 0 . (46)

Using the same solution method discussed earlier, I'll take homotopy steps

6S
DF [ = -ofF, (47)
G
to generate starting guesses for Newton iterations
)
DF [ = -F . (48)
5G

As earlier indicated, in a typical problem DF should be quite sparse with
perhaps one element in forty being nonzero. Therefore I'll employ least-squares
equation solver LSQR (Paige and Saunders, 1982) to solve (46)+(47) and
(46)+(48) taking advantage of this sparsity. LSQR is an iterative (conjugate
gradient) method of solving MX~2Y that requires user subroutines to compute
V4+MW and W+MTV for arbitrary vectors V and W,

To test this method I used the same test as for factor analysis: a 4 by 7
matrix of random numbers uniformly distributed between 0 and 1. To get 6
digit accuracy (using double precision arithmetic) required over 3,000 (tiny) homo-
topy steps and about 40 times that number of Newton iterations and about one
hour of CPU time on a VAX-780. Clearly something was wrong. The only
difference between this example and the factor analysis example was the choice
of equation solver; in the earlier study I used Golub’s QR method.

To better define the problem, I did two sets of experiments. In the first I
added a bias to the uniform random number to push them farther away from
zero. With a bias of about .25 or greater, the iteration converged in one
homotopy step. A bias of .125 or lower produced the disappointing behavior we
saw with the original zero bias. The second experiment was to lower the 6
digit accuracy requirement to 5 digits. In that case only one homotopy step

was needed.

COPING

As the LSQR method had trouble imposing norm constraint (45) indirectly
via differential constraint (46), I reformulated the problem. I did this by modi-
fying the original least squares problem (41). My new problem is

max J = —1/2 E (aij - S,-gj)2 - 7/4 ( Zsﬂ - 291‘2 )2 (49)

ij
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for some, to be chosen, constant ~. This is a penalty weight, not a Lagrange
multiplier.  Setting partial derivatives to zero now gives the equations

0 = Jg = J - ~87Ts - aTa)s (50)
and

0 = Jg = Jg + ~v(18Ts - aTq)a . (51)

When v = 0 we have the original equations (42) and (43). For factor analysis,
where 2 is [1, m|X[l, n], choosing v = 1 (why else did I divide by 4?) simpli-
fies the equations to

AG = (8Ts)s (52)
and

ATs = (@Tae)a : (53)

nearly the same form as the original factor analysis equations (8) and (9). The
difference is that these latter imply constraint (45) automatically. To see this
directly, multiply (52) by S7 and (53) by G'T and notice the left hand sides
are transposes of the same scalar. Therefore one can expect for our trace
balancing problem that the modified DF matrix that corresponds to (44) will
now be of full rank. This new second derivative matrix is

I, 0
DF = DF + (8Ts —<?TG)[0 _[] - 29T (54)

where @ is the vector (S,-G) we saw earlier in factor analysis. Notice that
while DF is no longer sparse, it is almost as cheap to apply to a vector as

the sparse DF of equation (44), an important consideration for the iterative
LSQR algorithm.

[ tested this approach with the same 4 by 7 synthetic as before. This
time it required one homotopy step and two Newton steps to get 10+ digit
accuracy. When the dimensions of the problem were increased to 35 by 72, it

took one more Newton step and the final accuracy was about 9 digits.

Next I applied the method using a simulated recording geometry of 32
shots and 7 geophones per shot. With the smaller bandwidth, three homotopy
steps and a total of 19 Newton iterations were required for 5 digit accuracy.
From experience with the surface consistent static model this was not totally
unexpected. In the limiting case of a bandwidth of 1 the answer has many
degrees of freedom, even with the norm constraint. Indeed the components of
S and G then completely decouple allowing arbitrary scalars to be multiplied
onto each component separately without affecting the (perfect) fit. In the small
bandwidth case I therefore expect to have poorly constrained solutions with the

components at one end of the line only mildly affecting the answer at the other
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end.

A PAUSE FOR REFLECTION

In last year’s report (Levin 1984), I tried my hand at surface-consistent
deconvolution by iteratively designing and applying a decon filter for each shot
followed by a decon filter for each receiver, and so on. This was an analog of
the Gauss-Seidel method for decomposing statics in a surface-consistent manner.
The Gauss-Seidel method also has a direct equivalent for the trace balancing
problem. By setting the derivatives in equations (42) and (43) to zero, I can
rewrite the trace balancing problem as finding a solution to the equations

si Y 90 = N ajg; (55)

jte jenl

and

9 BN st = Y as . (56)

icq, i€,

Fixing the g;’s, new s;’s are directly given by (55). With these new s;’s, (56)
produces new g¢;’s and so on. One should also impose the constraint (45) at
each step for stability. This is no hardship for inspection of (56) shows that
scaling the s terms by a constant factor inversely scales the g¢’s, which is what
the constraint wants us to do anyhow. For the homotopy step I'll still use the
linearized extrapolation from equation (47). To see how this compares with the
Newton method I've been using I reran the test with 32 shots and 7 geophones
per shot. Five digit accuracy was produced with one homotopy step and 129
“Gauss-Seidel” iterations. This is about six times greater than the number of
Newton steps taken 1in the previous solution. However, the computer time
required was almost six times less than before because of the time required to
solve the linear systems (55) and (56) was small compared to the time LSQR

required to solve the linear system (48). Clearly some more study is needed.

This “Gauss-Seidel” method suggests a different and more sensible way to
do surface-consistent deconvolution than in last year’s report. There I simply
iterated by deconvolving each shot gather, then each receiver gather, then, say,

again over shots and receivers, etc. until the results appeared unchanged from

iteration to iteration. This left the deconvolution filter length pretty much
uncontrolled — the more iterations the more filters cascaded together, and the
longer the effective filter length. In the new method I'm working on, one

stores the deconvolution filters rather than than the deconvolved gathers and
thereby can fix the total filter length. Jon Claerbout, in a recent discussion,
suggested a good framework in which to describe the essentials of both the
Newton and the Gauss-Seidel iterative methods. If T may safely paraphrase the
discussion, consider the dereverberation model
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(L - S;)*(1 - Gy) * Date;; = Random (57)

where S; and G are prediction (dereverberation) filters to be determined. Let
us take initial guesses S; and -G'—]- for these unknown filters. A nonlinear
approach, similar to the method just described, is to first fix all the G;’s to
get the smaller (linear) problem of designing a single filter of a given fixed
length best deconvolving each shot gather after the G filter have been applied
to it.  Claerbout (1985) in this volume discusses a family of methods for doing
this. Note that the effective filter length stays fixed. It is the filters, rather
than the filtered data, that are passed from one iteration to the next.

In a method such as the Newton scheme, we would calculate perturbations
65; and 6G; that fit the linearized model

[a-66)*0-5) + (0 -65)*0- 3 (59)
+ (1 -5)*1-G;) ]* Data =~ Random * Data

New values of S; and (7]- are formed by adding these perturbations and the
process is repeated several times until convergence is reached. Again the filter

length does not grow as the iterations proceed.

WHERE TO?

There’s lots here to work on. First, as discussed in Luenberger (1984),
there are a number of variations on Newton’s method designed to accelerate
convergence such as overrelaxation as well as conjugate-gradient like alternatives
like PARTAN. These might substantially reduce both the number of iterations
and the computational cost per iteration. Also I need to apply this to field
data and estimate what accuracy is really needed to produce acceptable trace-
balancing.  The various generalizations to surface-consistent deconvolution I've
discussed (as well as others I haven’t) have yet to be seriously studied.
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