Decomposition by Markov Processes

Jon F. Claerbout

Given the sound of several speakers added together into a single “seismogram”, or
given a VSP containing events of several dips, or a profile with several velocities, or a

section with both geologic layering and fault edge diffractions, how can we decompose

such data into its components?

Let d; represent the 7% component of such a decomposition. The sum of the
components of the data should give the data itself. Let dj(”) represent our n'" esti-
mate of the ;" component. For each estimate n the sum of the components should
give the data. Markov matrices are matrices whose columns sum to unity — to preserve
the unity sum of probability. Actually, multiplication by a Markov matrix preserves the
sum of the components of any vector. So we can use Markov matrices to take us from
any decomposition d") to the next d(®+1). Initially we could simply divide the data

equally among the components, or we could put all the data in the first component.

First Markov matrix

Consider the following Markov transition:

(n+1) (n)
dy " l-ay By o3By  ap3Bjy dy
dgy = an By 1-apB,  aypB; dq (1)
ds ag1By  azBgy 1-0338; dg

The «;; contain the cross coupling. To preserve the data being the sum of its com-

ponents, we must have the column sums being unity, namely, »}; a;; = 0. At conver-
gence each component di(" +1) equals dz-(") S0
aj; By dj =} oy B od; (2)
i, g
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Prediction error

Consider a two component prediction error filtering problem with a;; = 1/2 and
two given prediction-error filters B; and B, Equation (2) says that at convergence,
the prediction error coming out of the first filter B; matches the prediction error com-
ing out of the second filter B, This is the problem that led me to thinking about

decomposition; my two prediction operators are each velocity dependent filter pairs.

Markov matrices ordinarily have real positive elements, but notice that in the
Fourier domain, we are extending their use to complex elements. I don’t think this

creates any problems.

Vertical seismic profile (VSP)

Next consider the example of a VSP. Here the goal is to divide the VSP into com-
ponents with various dips. It is helpful to think of the operator B; as a “badpass”

operator. It passes with unit gain, all that does not fit some model. That is,

where G tries to predict the 7% component of the data. In multidimensional prob-

lems, G is usually some kind of a spatial low-pass filter. For VSP’s the filter G;

a shift to flatten the 7" event followed by a spatial lowpass filter which might be imple-

is
mented by a tridiagonal scheme, followed by the reversed shift.

Velocity decomposition of a CDP gather

Consider

G; = NMO™ SpatialLowPass NMO (4)

Various j-values refer to various NMO velocities and/or various filter cutoffs. I think
the tridiagonal NMO inversion scheme | worked out a few weeks ago should work
nicely. Of course NMO does not have an exact inverse. A pseudoinverse should do, as
long as the the eigenvalues of B; are less than unit magnitude. I expect instability
should any of the eigenvalues of G be negative. For NMO by linear interpolation, I
suspect the transpose NMOT would work too if its column sums were normalized to
unity. This is worth trying. It should be fast. The decomposition should be useful.

Who knows what difficulties lurk in the side boundaries ...
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Spectral decomposition

Let kj;, k; <k;,; be aset of cutoff frequencies in the spatial spectral domain. A

family of lowpass filters is

1
L, = — = 5
! 1+ T/kj? ¥
where T is the familiar tridiagonal matrix with the negative of the second difference
operator on its diagonal. Positive bandpass filters, less than unity in magnitude, are

given by G; =1L;,,-L;.

Mixed voices

If you thought I was going to solve the mixed voices problem, you are a dreamer.
For that problem I suspect that the «;; are not given apriori but must be deduced via
envelope functions of the data and the data components. The mathematics of problems

of this kind should be buried in the literature on adaptive antenna theory.

Convergence procedure

The convergence of the iteration is something that needs to be studied. In the
deconvolution problem, I would iterate for a while, then stop and re-estimate the decon-
volution filters from the improved data components. That is, initially my first two filter
pairs would depend on velocity and the original data d. After a decomposition of
d = d, + d,, one new pair would be based on v; and d;, while the other pair would

be based on vy and d,.

Missing data

Since the output of each B; is a prediction error, naturally it would be set to zero

where the predicted data was not recorded.

Another Markov matrix

In the interests of computational efficiency, particularly while starting out the itera-

tion, we might throw all the energy out from one channel into the next channel pro-

cessed.
dl (n +1) I—OZIBI 0 O./3B3 dl (n)
d 2 — alB 1 1“&’2B 2 0 d2 (6)
d3 0 OZQB 9 1—0’333 d3
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Later, as convergence approaches, the more symmetrical arrangement (1) might be

preferable.

Formulation as an Optimization Problem

Finally T should point out that data can be decomposed by optimization with the
constraint d == d+do+ - - -. It is possible that the Markov sequence is a numerical

solution to some such optimization problem. Maybe it is this:
min = YR;d? + Redf + Rydi + - (7)

where R = BTH.
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