The partial Fourier transform
Chuck Sword

INTRODUCTION

The discrete Fourier transform transforms one discrete series into another. If the
discrete series is written as a vector, then the discrete Fourier transformation (DFT) can
be written as a matrix, and the transformed vector equals the DFT matrix times the ori-
ginal vector. This is nothing new. An interesting problem, however, is to consider frac-
tional powers of the DFT matrix. That is, it is possible to find another matrix that,
when multiplied by itself a certain number of times, gives the DFT matrix. If we multi-
ply our input vector times this fractional-power DFT matrix, what sort of output do we
get? A related question is, what do the eigenvalues and eigenvectors of the DFT matrix
look like? (The eigenvalues and eigenvectors, when known, can be used to compute the

fractional-power DFT matrix).

When I started thinking about this problem, I was looking for some way of express-
ing data in a domain that was somewhere in between the time domain and the frequency
domain. I thought that this way of expressing data could be useful in such problems as
the construction of time-varying frequency filters, where one is interested in something
that is not entirely expressible in either domain. I am not the first to seek an intermedi-
ate domain (Goupillaud et al., 1984), nor am I the first to look into eigenvectors and
fractional powers of the DFT matrix (McClellan and Parks, 1972; Dickinson and
Steiglitz, 1982). In fact, other SEP members have also thought about the eigen-

properties of the Fourier transform (Claerbout and Fowler, personal communications).

In the end, I produced some interesting plots and learned some things about the
eigenvalues and eigenvectors of the DFT matrix, but I could not find a useful intermedi-
ate domain in which to express data. It seems the partial DFT is not useful in solving

this problem.
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THE DISCRETE FOURIER TRANSFORM MATRIX

As shown in FGDP (Claerbout, 1976, p.9), the discrete Fourier transform (DFT)

can be written in the form of a matrix:

11 1 1 by B,
1 1 w w? wd b, B,
‘“—/——N 1 w?2 wt @b by - B, (1)
1 w2 wb w03 B,
where b is the original series, B is the transformed series, and w = eQ”i/N, with N the

number of points in the series b (Equation 1 shows the case of N = 4). Let Y be

defined as the matrix of w’s. Then we can call Y the DFT matrix, and write

Yb — B. (2)

PARTIAL POWERS OF THE DFT MATRIX

Now that Y has been defined, it is possible to imagine a matrix ?1/2, where
YY/*¥Y? =Y. For that matter, one can imagine the matrix 'Y raised to any fractional
power. If b is a time series, then B = Yb is the discrete Fourier transform of that

series, and B/ = YY%b is a partial Fourier transform of b.

One way to find Y!/?

There are two relatively easy ways to find Y2 One is to use a program called
‘matlab’ on our computer. Simply type ‘ysqg = y**5”, and if you have already defined
y to be the DFT matrix, then ysq will correspond to Y2 You probably don’t have

access to this program, however, and so I will explain what ‘matlab’ is doing.

The eigenvalues and eigenvectors of Y can be found using standard numerical
methods. Once these have been found, the eigenvalues can be put in a diagonal matrix
A, and the corresponding eigenvectors can be put in a matrix V. Then it can be shown
that Y = VAV! (where V' is the matrix inverse of V). More importantly, it can be
shown (Claerbout, 1976, pp. 94-96) that for any function f |

FY)=Vy @&V (3)
This means, for instance, that
- -
VM
Ve
YV |V L v (4)
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where Aj, Ny, - - -, Ay are the eigenvalues contained in A. In a later section I’ll discuss

what the eigenvalues and eigenvectors look like.

Another way to find Y!/?

Shuki Ronen (personal communication) suggested another way to find partial
powers of the DFT matrix; his method does not involve eigenvectors, and gives quite a

bit of insight into what one should expect from applying partial DFT’s to data.

It is possible to use a Taylor expansion to evaluate partial powers of the DFT

matrix. Then

\/§:1+%(?-T)-%(?—T)MT%(?—‘DB_ (5)

Note that Y? = H, where

(1000 0]
00001
H= (00010 (6)
00100
0100 0]

(shown here for N = 5). This simply shows in matrix form the well-known result that
a DFT applied twice produces a backwards time series. Note also that Y° = YH (a
backwards DFT matrix), and Y* =T

If we substitute these into Equation (5), we obtain the qualitative result that Y2
looks like Y overlaid with HY overlaid with T and H. So Y"/?b looks like b —+ (time-
flipped b) + B + (flipped B). This suggests a strange-looking result, not much like the
one | had originally hoped for.

NUMERICAL RESULTS

In this section I will show the result of applying partial DFT’s to some simple time
functions. First, though, it is interesting to examine what the DFT matrix looks like.
The real and complex parts of the DFT matrix Y are shown in Figure 1, with black
representing positive values and white representing negative values. Similarly, Figure 2
shows the partial DFT matrix Y2 The black diagonal line corresponds to the identity
matrix, so this Figure gives graphical expression to the assertion made above, that Y2
is in some sense a superposition of I (the identity matrix), Y (the DFT matrix), and their
reversed forms. Figure 3, which shows Y'® has been enhanced (the black-white con-

trast increased) by about a hundred times to show that Y equals T plus a slight
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0 64 128

FIG. 1. The real and complex parts of the DFT matrix Y (see Equation (1)). Black
represents positive values and white negative values.

FIG. 2. The real and complex parts of the partial DFT matrix Y'/%. Notice the black
diagonal line corresponding to the identity matrix, and the line with the opposite slope,
which corresponds to the reversed identity matrix.
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0 64 128

FIG. 3. The real and complex parts of the partial DFT matrix Y. The black-white
contrast has been enhanced a hundred times over that in Figures 1 and 2, in order to

bring out the weak imaginary component. Note the strong real component, which is
essentially the identity matrix I.

imaginary component.

In Figure 4 I show the result of applying some partial DFT’s to a particular time
series. Fig. 4a shows the original time series, b. Figures 4b-e show, respectively, Y'l/sb,

?2/5b, ?3/5b, and Y*/°b. Figure 4f shows Yb, that is, B, the Fourier transform of b.

When I began this project I was naively hoping that I could find a reasonable inter-
mediate stage between a time series and its Fourier transform. I thought that the
wavelet in Figure 4a, for instance, might slide over gradually until it reached its final
position (or positions) in Figure 4f. Instead, the intermediate stage turned out to be an
arithmetic combination of the original series plus the transformed series, with some
time-reversal thrown in (note the highlighted bump in Figure 4c). If there is a sort of
intermediate stage of representing data, partly in the time domain and partly in the fre-

quency domain, it seems that partial DFT’s are not the right way to seek it.

EIGENVALUES AND EIGENVECTORS OF THE DFT MATRIX

There are only four distinct eigenvalues of the DFT matrix: 41, and +7. Since

there are, in all, N eigenvalues for the N XN DFT matrix, there is a great deal of
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FIG. 4. Partial DF'T’s applied to a particular time series. Figures 4a-f show, respec-
tively, Yb (b), ?1/5b, Y /‘r’b, ?3/5b, ?4/5b, and Y'b (B, the Fourier transform of b).
Heavy lines show the real components, and light lines show the imaginary. In 4c an
arrow highlights the bump due to the reversed-time form of the original time-series b.

degeneracy. Thus one cannot speak of a definite set of eigenvectors; there are an infinite
number of different possible sets of orthonormal eigenvectors. After I worked for a while
on the eigenvector problem I came across a reference (Dickinson and Steiglitz, 1982) to
an earlier paper that contained most of the results I sought. This paper (McClellan and
Parks, 1972) shows, among other interesting things, that if b is any even time series,
then Ybb is an eigenvector, with an eigenvalue of 41, while if b is any odd time series,
then Yb¥b is an eigenvector, with an eigenvalue of 4¢. The problem of constructing

an orthonormal set of eigenvectors is discussed in (Dickinson and Steiglitz, 1982).
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CONCLUSIONS

It 1s possible to find partial DFT’s, which are defined as partial powers of the DFT
matrix Y. Analysis by Taylor-series expansion shows that the partial DFT matrix can
be represented in the form of a sum of the DFT matrix, the identity matrix, and their
reversed forms. I must admit that I see no use for the partial DFT in seismic processing,

although I entertained some hopes at the beginning of the project.
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Are you ready to enter Moscow State University?
(Answers)

In the last SEP report (SEP-41, p. 326) I gave an example of the entrance exam that would
be taken by applicants wishing to be admitted to Moscow State University as undergraduates in
geophysics. Applicants have four hours to complete the test. You have had more than four
months. Here are the answers (taken from the back of the book; I haven’t checked them for accu-
racy).

Answers to geophysics exam

1.z =-1; z =14
| BL | > | BG |

Lo

3. z = ;139:52;:1::;—

1
2

4. ¢z = %+2k7r, y =n—2km, forall k =0, £1, +2, ...
A

5. Point
3n 1
6. —-
10
1+ 14—
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