L1 Regression Program
Jon F. Claerbout

In 1973 Francis Muir and I published a much-quoted paper on the applicability
of the L; norm to geophysical problems. Although I developed a program for L,
multivariate regression, I did not include it in that paper, nor did I include it later in

FGDP. The program is given here along with some test cases, and my opinions
about the program.

Development of L, in Geophysics Since 1973

The L, norm continues to be a fascination to researchers. The use of medians
and quantiles has become widespread in practice. At the SEP all the plot programs
default to quantiles to determine the clip and the CRT plotting programs defaults to
an algorithm using quantiles to determine the non-linear compression. We rarely use

AGC. Shuki Ronen routinely uses running medians in his statics programs.

So far, the L, multivariate regression has received little attention. The only
application of L, regression in routine practice seems to be for earthquake epicenter
locations. Several deconvolution researchers have tried to incorporate L | concepts
but I don’t believe this has been done with L, regression. At SEP we make no rou-
tine use of L; norm regression. This may be because of lack of a compelling appli-
catlon, or it may be lack of a convenient program. So I dug out the 12 year old pro-

gram listing and reran it. Results are shown in figures 1 and 2.

Degeneracy in the Test Case

The test cases in this study all related to fitting sinusoids to a step function.
Curiously, this simple arrangement generates some interesting degeneracies, thus
presenting a challenge to all linear programing codes. Ordinarily a certain number of
the regression equations are solved exactly at the optimal solution. The number of
equations that fit exactly is the same as the number of unknown adjustable parame-

ters. Degeneracy arises when the data is such that more than the required number

SEP-42
45

Claerbout

=

FIG. 1. Fitting a step function with sinusoids. Fits of increasing skewness. (recom-
putation of figure 9 in Claerbout and Muir [1973])

.

o

T%I T T T T T I I
0 5 10 15 20 25 30 35

FIG. 2. Upper bounding fit of sinusoids to a step function. Curves of increasing m
the number of sinusoids. The m'" order curve touches the step at m places. Fits of
increasing skewness. (recomputation of figure 3 in Claerbout and Muir [1973])

SEP-42
46

Regression Program

of equations is solved. With real, noisy data this wouldn’t happen. Here is how it
can happen on this synthetic data: A particular sinusoid is the unit constant funec-
tion. The constant function can fit the step function exactly at half of the time
points — thus a massive amount of degeneracy. What happens to the program is
that it can get stuck on this solution, and fail to descend all the way. I wasn’t
interested in this degeneracy but I liked the test case, so I simply added a small slope
to the step function.

Program Reliability

One problem in linear programming is deciding whether an equation Is satisfied
or not. This amounts to deciding whether a number is zero or not. Since single pre-
cislon accuracy is about six digits, I chose values for practical zero to be less than
about 10™. I had no problems, but the fitting functions were nearly orthogonal in
my test cases. Traditional matrix difficulties could arise in other examples. The pro-
gram Is certainly not written to a high standard in numerical analysis. Whether it
(or any professionally coded matrix program) is reliable in practice depends mainly
on the application to which it is put. In other words, you should try it and see. I
have not tried this program with more than about 15 variates, but I think it should
work with many more.

The absolute value function is generalized by having a down slope “gd” and an
up slope “gu”. To impose inequality constraints, you can Imagine setting one of the
slopes equal to zero and the other slope equal infinity. For my upper bounding fit

example I let one slope go to zero and kept the other slope unity. The reason I did

this was to maintain the concept that practical zero is 107°,

Program Listing

The program is given in Ratfor, a dialect of Fortran. Most programmers can
convert Ratfor to Fortran without any specific instructions. For those with ques-
tions, a Ratfor review is in SEP-40 p.67.

REFERENCES

Claerbout, Jon F., and Francis Muir, 1973, Robust Modeling with Erratic Data, Geo-
physics Vol. 38, No. 5, pp 826-844

SEP-42
47

fig9.r

Claerbout and Muir 78 figure 9

define MAXNI1 40 # beware, it is also in subroutine

define MAXN2 20 # beware, it is also in subroutine

real a(MAXNI MAXN2)x(MAXN2),d(MAXN1),e(MAXN1),gu(MAXNI1),gd(MAXN1)
real arg, small

integer n,m,i,j,m,iskew

integer output, outfd

outfd = output() # designate output file
n = 40 # n is the length of the step function
m = b5 # m 1s the number of sinusoids.

” N
?

call fetch(’n2 m”,”i”,m)
ifl m > MAXN2)
call erexit(”dimension statement too small”)
call putch(”title”,”s” ”Increasing Skewness”)
call putch ("n1”,”i” n)
call putch ("n2 or m ”,7i”,m)
call putch ("nplot or n2””i1”,5+1)
do i = 1,n/2
d(i) = -1. -.001#
do i = n/2+1n
d(i) = 1. —.0014
call rite(outfd, d, 4=) # output
do iskew = 1,5 {
do i = 1n {

gd(i)z—i./ 2. #+{iskew-1)

i = 1n {
arg = (((i-n /2-.5)#3.14159265 42 #-2)) /(2. *n))
if(245/2) == 1)

| a(i,j]) = sin(arg)

}

a(i,]) = cos(arg)

small = 1.e-5
call elskew(n,m,a,d,gu,gd,small x)
doi = 1n {

e(i) = 0.

do j = 1m

call rite(outld, e, 4%)

}

stop
end

Jan 22 10:81 1985

48

fig9.r

Page 1 of figd.r

fig3.r

Claerbout and Muir 1973 figure 8
define MAXNI1 40 # beware, 1t is also in subroutine
define MAXN2 20 # beware, it is also tn subroutine
real a(MAXNI MAXN2)x(MAXN2),d(MAXN1),e(MAXN1),gu(MAXN1),gd(MAXN1)
real arg, small
integer n,m,,j,mm
integer output, outfd
outf{d = output()
n = 40
m = 5
call fetch(”’n2 m”,”i”,m)
if{l m > MAXN2)
call erexit(”dimension statement too small”)
call putch(”title”,”s” ”Upper bounding_fits”)
call putch ("n1”,”i” n)

call putch ("n2 or m ”,”i”,m)
doi = 1n {
gu(i)=1.
gd(i)=-.0001 # Be more forgiving for negative errors.
doi = 1n/2
d(i) = -1. -.001#
do i = n/2+1;n
di) = 1. -.0014
call putch ("nplot or n2”,”i”,m)
mm = m
call rite(outfd, d, 4+)
do m = 2mm {
do j = 1m {
do i = 1n {
arg = (((i-n/2-.5)#3.14159265 42 4-2)) /(2. #))
i 24/2) == J)
a(i,j) = sin(arg)
else
a(i,j) = cos(arg)
}
small = 1l.e-5

call elskew(n,m,a,d,gu,gd,small,x)
do i = 1n {

e(i) = 0.

do j = 1,m

call rite(outfd, e, 4)

}
stop
end

Jan 21 09:30 1985

49

fig3.r

Page 1 of fig3.r

elskew.r

subroutine elskew(n,m,a,d,gu,gd,small,x)
find z(i) to minimize
#

esum = sZm skewnorm(k, sum ?d(k)—a(k,z'}*z{i)})
k=1 =1
skewnorm(k,er) = er¥((if(er>0) gu(k) else gd(k))

Jon F. Claerbout 8/73, converted to Ratfor 1/85
real a(n,m),x(m),d(n),gu(n),gd(n)

real sc(20),g(20),gp(20),gm(20),col(20),row(20)

real w(256),f(256),b(20,20)

integer k(256)

integer 1i,j,],m,n,ml,mh,loop kick ,new

real hit,wt,oldk,gr,tk,t,esum small,bigd

if(n>256) call err(”error exit: n too big”)

if(m>20) call err("error exit: m too big”)

do j = I,m {

x(j) = 0.
doi = 1m
b(i,j) = oO.
sc(j) = 0.
doi = 1n
se(j) = sc(j)+abs(a(i,j))
b(j,J) = n/sc(j)
bigd =
doi = 1n
if(abs(d(i)) > bigd)
bigd = abs(d(i))
doi = 1n {
f(i) = d(i) / bigd
k(i) = i
}
loop = 0
of only gu and gd changed you may reenter here.
#cccee entry again
repeat {
loop = loop+1
kick = 1+ mod(loop-1,m)
if (loop>m) {
find best equation to —kick— out of basis.
do i = I,m {
gp(i) = 0
gm(i) = 0.
gli) = 0
}
do!l = 1n

if (abs(f(l))>=small) {
if (f(1)>small)

hit = gu(])
if (f(l)<small)
hit = gd(l)
do j = 1,m
\ g(i) = sg(i)-a(l,i)#hit
else

Jan 22 09:56 1985

50

elskew.r

elskew

Page 1 of elskew.r

elskew.r

33k

Jan 22 09:41 1985

wt = wt+a(l,j) #b(j i)

gp(i)-gu(l) *wt
gp(i) = gp(i)-gd(l) *wt
T

gm(i) = gm(i)-gu(l)*wt

if (wt<<O
gm(i) = gm(i)-gd(l) wt
oldk = 0.)
do i = 1m {
gr = 0
do j = 1m

gr = gr+g(j)(ji)

if ((gr+gp(i))(gr+gm(i))>=0) { .
Pk = aminl(abs(gr+gp(i)),abs(gr+gm(i)))
if (tk>oldk) '

kick = i
if (tk>oldk)
oldk = tk
}
}
if (oldk===0.) # Break out of "repeat { 7 loop.

break 1

find scalar t where z=z0+(col of b)*t
do i = 1n {
w(i) = 0.
do j = 1,m
w(i) = w(i)+a(i,j)#b(j kick)

call skewer{n,w f,gu,gd,small k,t,ml,mh)
write(6,10)(k({1),i = mlmh)
10 format(40i3)
pick out a new basis equation
new = k(ml)
do I = ml,mh
if (abs(w(new))<<abs(w(k(1))))
new = k(l)
call putch(” kick””? kick)
call puteh(” new”,”?, new)
t = f(new)/w(new)

esum = 0
doi = 1n {
fli) = f(i)-w(i)=
if (f(i)>0.)
. esum = esum+gu(i)*(i)
if (f(i)<(-0.))

esum = esum+gd(i) (i)

update z and basis matriz as described(transposed)in Hadley p.49
do j = 1,m {
col(j) = b(j,kick)

x(j) = x(j)+col(j) #
row(j) = 0.
do1 = 1m

51

elskew.r

...elskew

Page 2 of elskew.r

elskew.r elskew.r

...elskew
row(j) = row(j)-a(new,i)*b(i,j) /w(new)
row(kick) = 1./w(new)-1.
doi = 1,m
do] = 1I,m
b(i,j) = b(i,j)+-col(i) 7row(j)
write(6,20) esum, t
20 format(10el2 .5)
call putch(”esum”,”{” esum) # Put residual sum into output date base
do j = 1I,m
x(j) = x(j) * bigd
write(6,20) (x(j),) = 1,m)
return
end
Jan 22 09:41 1985 Page 8 of elskew.r

52

skewer.r

subroutine skewer(n,w,f,gu,gd small k,t,ml,mh)
For a Fortran version all in upper case see FGDP p. 126

skewnorm(ker) = (gd(L)*(er+small} tf er<<-small gd<0
if absfer) <= small

gu,gd,w,and f are rcfcrenced indirectly as w(k(i))i=1n etc
minima will be at equations k(ml)k(mi+1),...k(mh).

real w(n)f(n),gu(n),gd(n),g(100)

integer k(n)

integer inlow large,ml,mh,mlt,mht,itry,}

real gn,gp,t,er,gnt,gpt,gplx,gmix,small,grad

solve rank 1 overdetermined equations with skew norm
tnputs— n,w,f,gu,gd, smallk. outputs— k,t,mimh.

find t to minimize

n

Is = sum skewnorm(k,f(k)-w(k)*t)

k=1

where (gu(k)*(er—small) if er>+small gu>0
#

#

#

#

low = 1
large = n
ml = n
mh = 1
gn = 0.
gp = 0.

do itry = 1,n {
1 = k(low+mod((large-low) /3+itry,large-low+1))

if (abs(w(l))!=0.) { ‘ # 7!=" means "not equal’
v — 10) /()
f1) = w(l)*
do i = low,large {
1 = k(i)
er = {(1)}-w(l)#
g() = o.

if (er>small)

g(l) = -w(l)*gu(l)
if (er</(-small))

g(l) = -w(l)#d(l)

call split(low,large k,g,mlt,mht)

gnt = gn
do 1 = low,mlt

gnt = gnt+g(k(i))
gpt = gp

do i = mbht,large
gpt = gpt+g(k(i))

gplx = 0.

gmix = 0.

do i = mlt,mht {
1 = k(i)

if (w(l)<0.) {
gplx = gplx-w(l) *gu(l)
gmix = gmix-w(l)*gd(l)

}
if (w(1)>0.) {

gplx = gph\—w() gd(1l)
gmix == gmix—w(l)*gu(l)
}

grad = gnt+gpt

Jan 21 17:01 1985

53

skewer.r

skewer

Page 1 of skewer.r

skewer.r

if ((grad+gplx)#(grad+gmix)<0.)

break 1
if (grad >=0.)

low = mht+1
if (grad <=0)

large = mlt-1
if (low>large)

break 1
if (grad>=0.)

gn = gnt+gmix
if (grad<=0.)

gp = gpt+gplx
if (grad+gplx===0.)

ml = mlt

if (grad+gmix==0.)

ml = minO(ml,mlt)
mh = max0(mh,mht)
return

end

Jan 21 17:02 1985

mh = mht

54

skewer.r

...8kewer

Page 2 of skewer.r

split.r split.r

subroutine split(low,large k,g,ml,mh) 8pth
For a Fortran version all in upper case, see FGDP p 127
given g(k(i)),i=low,large
then rearrange k(i),i=low,large and find ml and mh so that
(9(k(7)),i=low,(mi-1)) < 0. and
(9(k(r)),i=mlmh)=0. and
(g(k(1)),i=(mh+1) large) > 0.
real g(100)

integer k(100)
integer low,large k,ml,mh keep,i,ii

FHFFHHIIH%

ml = low
mh = large
repeat {
ml = ml-1
repeat
ml = ml+1
until(g(k(ml)) >=0)
repeat {
mh = mh+1
repeat
mh = mh-1
until(g(k(mh))<=0)
keep = k(mh)
k(mh) = k(ml)
k(ml) = keep
if (g(k(m1))!—g(k(mh)))
break 1 # Break out of enclosing "repeat{”
do i = mlmh {
=i
if (g(k(i))!=0.0)
go to 30
break 2 # DBreak out of two enclosing "repeat{” s
30 keep = k(mh)
k(mh) = k(ii)
k(i) = keep
}
return
end
Jan 21 17:02 1985 Page 1 of split.r

55

IATpX

L shn J

\begin{center}
\setlength{\unitlength}{iem}
\begin{picture}(20,20)
\put(10,10) {\oval(3,6)}
\put(7.66,6.9){\circle{2.8}}
\put(12.36,6.9){\circle{2.8}}
\put(7.35,11.6){\circle{2.5}}
\put(12.65,11.5){\circle{2.6}}
\put(10,14.86){\circle{4}}
\put(10,14.8){\circle*{.5}}
\put(9.2,16.4){\circle*{.6}}
\put(10.7,16.4){\circle*{.6}}
\put(8.2,16.6) {\circlex{2}}
\put(11.8,16.6) {\circle*{2}}
\put(17,6){\vector(0,1){10}}
\put(3,3){\oval(2,4) [b1]}
\put(3,17){\oval(2,4) [t1]}
\put(17,17){\oval(2,4) [tr]}
\put(17,3){\oval(2,4) [brl}
\put(7,1){\framebox(6,3){\shortstack{A\\BEAR}}}
\end{picture}

\end{center}

Figure 1: Pﬁwe Example
56

Tutorial

