Simultaneous Pre- and Post-NMO Deconvolution
Jon F. Claerbout

ABSTRACT

Wave theory justifies both pre- and post-NMO deconvolution, but the filters should
be estimated simultaneously, not sequentially. A conjugate gradient procedure estimates
the two filters simultaneously. The method also handles spherical divergence indepen-
dently from statistical weighting. Test cases demonstrate the expected interaction
between NMO and deconvolution. The tests were inadequate to establish that simul-

taneous estimation is superior to sequential estimation.

THE ART OF DIVIDING BY ZERO

That our data is limited in bandwidth is generally ascribed to a convolutional
wavelet resulting from the source and its reverberation in the weathered zone. Deconvo-
lution is the art of removing this “surface wavelet.” The surface wavelet is unknown and
is generally estimated from the data itself. The earth possesses reflectivity at all scales.
The basic model for estimating the surface wavelet relies on the assumption that the
spectrum of the earth’s reflection coefficients is white. This assumption is imperfect, but
experience generally shows it to be better than none. With this assumption, the spec-
trum of the surface wavelet is the spectrum of the seismogram itself. A zero-phase esti-
mate of the surface wavelet is obtained from the spectrum of a seismogram (or average
spectrum of a group of seismograms) by taking the square root, and inverse Fourier
transforming. Deconvolution may be performed by dividing the Fourier transform of the
data by the square root of the spectrum (or average spectrum) and inverse transforming.
Since the seismic bandwidth drops off into noise at high frequencies, deconvolution may
be called “the art of dividing by zero”. To control the problem of noise amplification at

high frequencies, the result is often bandpass filtered with a display filter.
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Most deconvolution filters are estimated and applied in the time domain. The time
domain is naturally suited to tailoring the deconvolution filter to be causal and of lim-
ited time duration. This in itself controls noise somewhat. A filter i =
(1, f 1, fa ---,f,) isdefined as a function of its coeflicients f¢. By means of least
squares, these coefficients are adjusted so as to minimize the power in the filter’s output.
It is shown in FGDP that this procedure whitens the output spectrum as does the
Fourier method previously described. This filter turns out to be minimum phase and is
the inverse of the surface wavelet if it happens to be minimum phase. This time-domain
method does not escape the high-frequency difficulty of the Fourier method. But in the
time domain, there are alternate means of attacking the problem. One means, to be
exploited in this paper, is to constrain the early filter coefficients to be zero. The early
coefficients f |, fo, -+ -, [ 4ap determine the slow variations in the spectrum. (For
example [ ;exp iwAt is slowly variable in the Fourier domain). By constraining these
coefficients to be zero, the deconvolution cannot amplify the high frequency band with
respect to the central signal band. Further, the gap has a simple physical interpretation.
Gapped time-domain deconvolution does not attempt to convert reflections to impulses,
but instead to convert reflections to short wavelets the length of the gap. So it attempts

the possible, not the impossible.

MECHANISMS AT THE SOURCE

In geophysics we see a historical struggle between those who interpret everything
they see as manifestations of the heterogeneity of the earth, and those who interpret
everything they see as manifestations of the anisotropy of the earth. Deconvolution is
also a potential battleground for this struggle. Surface-consistent methods can be
classified as being based on the heterogeneity of the earth. Slant stack and radial trace

deconvolutions can be classified as being based on anisotropy of the radiated waves.

In a homogeneous medium, a point source of energy can radiate the same waveform
in all directions. If the source lies near any strong vertical ¢inhomogeneity the distant
waveform becomes angle dependent (anisotropic). The simplest example is the free-
surface ghost. This ghost generally follows the first arrival so soon, that it is difficult to
distinguishable from it. The time delay becomes shorter with increasing angle, giving

spectral changes with angle.
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Bubble and multiple reflection as points on a continuum

Consider the two models: (1) bubble generated wavelets and (2) reverberations of
multiple reflections. These seem to be very different models. However, the bubble could
be modeled as a particular form of near-surface inhomogeneity. Imagine very shallow,
very slow, very strong velocity stratification, atop a homogeneous medium. In the
mathematical limit, any minimum phase reverberation might result from an impulse at
the surface. In this model any wave in the subsurface must propagate vertically at the
near surface. So a wave from the surface travels vertically from the surface, to the sub-
surface where it diverges into a spreading spherical wave. So, near-surface reverberation
mimics the isotropy of a bubble. There is no divergence until the wave escapes the near
surface, then the divergence is spherical. So, allowing for the time delay through the

near-surface, spherical divergence correction of the pseudobubble also mimics the real
bubble.

NMO to bring reverb to wider offsets

Suppose a dereverberation filter is known for the zero-offset trace. Consider a fam-
ily of hyperbolic multiple reflections in a water layer. The arrivals are uniformly spaced
at zero offset but compress together at wider offsets. If the zero-offset filter is applied at
other offsets, the deconvolution will deteriorate with offset. This deterioration with
angle can be diminished if the seismograms are corrected for normal moveout. Experi-

mental confirmation is found later in the paper.

Normal moveout correction transforms the time axis to the axis of travel-time
depth via 2= 72+x2/02. So it is natural to refer to decon before NMO as t-decon,
and decon after NMO as 7~decon. The method to be developed here simultaneously esti-
mates the pre- and post-NMO deconvolution filters. It will be called ¢ 7~decon , simul-
taneous decon or anisotropic decon. It may be argued that any decon after NMO is

anisotropic. This is true after inverse NMO. Simultaneous ¢7 decon is anisotropic
before and after NMO.

Iterative cascades

Before tackling the simultaneous estimation problem, let us consider a repetition of
familiar sequential estimates that converges to something roughly like the simultaneous
estimate. A single deconvolution filter could be estimated for a field profile. The field
profile could be deconvolved with this filter (i.e. ¢-decon). Then NMO could be done
and another filter estimated and applied (i.e. 7~decon); Then inverse NMO could be done

and the output could be deconvolved again (i.e. {-decon again), ad infinitum. In the log
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spectral domain, t-decon removes the w-spectral average (over channels) and rdecon
removes the k -spectral average. The averaging directions are neither perpendicular nor
parallel, so when you remove one average, you affect the other. Except for noise prob-
lems, the result of the infinite cascade should be like the simultaneous filter estimation

technique to be described (i.e. ¢ 7~decon).

ESTIMATION METHOD

No need for the Levinson recursion

The time has come to abandon the Levinson recursion. The computer economies
do not warrant the loss of flexibility. The economies never really were that significant,
because the effort to determine the autocorrelation needed by the Levinson recursion is
much greater than the cost of the recursion itself. In fact, the cost of gathering the

autocorrelation typically matches the cost of an ordinary, non-Levinson solution.

Simultaneous equation solving

There are some excellent exact methods of solving simultaneous equations, but I
prefer iterative methods. The conjugate gradient method is an iterative method that
obtains the exact solution in precisely n steps, where n is the number of unknowns.
So it offers the same advantages of “exact methods”. I generally prefer to do less than
the full number of iterations. In this study I always did 10 iterations for a filter of 30
points. Wang and Treitel [1973], used conjugate gradients for classical deconvolution.
They reported normalized mean square errors of 107 for this filter size and iteration
count. Geophysical errors are generally much larger. Wang and Treitel solved the clas-
sical square system (AT A)?, whereas here we solve the overdetermined system
directly. I have not yet studied the effect of the number of iterations. Simple theoreti-
cal considerations suggest it may be better to quit early. In the early iterations, the
prediction error power drops rapidly. In the late iterations, the filter develops complex-
ity, while hardly dropping the error power. Then it is fitting the noise instead of the sig-
nal. It seems that limiting the number of iterations is a natural way of limiting the
number of degrees of freedom in the filter. It is a natural way of having a long filter

without having a lot of degrees of freedom.

[ used a particular dialect of the conjugate gradient method called the Paige-
Saunders {1982] method. The Paige-Saunders program requires that you provide subrou-

tines to compute
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y «— y +Azx

and

z +— z+AT y

The matrix A should not change from one iteration to the next, as would happen
if a non-linear problem were being relinearized. In that case, it is appropriate to restart
the conjugate gradient method whenever relinearization occurs, or else use the partan
method (Luenberger [1973]).

Simultaneous estimate of bubble and reverb filters

Simultaneous estimation of pre- and post-NMO decon filters (¢ 7-decon) is based on

the following model:

data ~ —L L npo-r _random (1)

1-bub ¢ 1 - reverd

First, random white noise is divided by a reverberation filter. (An example of reverb
expressed in Z-transform notation is ¢ Z" where ¢ is the sea-floor reflection
coefficient, and Z" is the delay operator for vertical travel time). The result of the
division is thrown out into hyperbolas via inverse NMO; a spherical divergence multi-
plier 1/t is applied; and the final result is convolved with a bubble wavelet to give the
synthetic data. In this model the bubble wavelet is really bubble = 1/(1-bub). So
bub is not a physical variable at all, but a convenient mathematical function that we
need for the optimization. In this model the same bubble wavelet is applied to all
offsets, i.e. the bubble is presumed to be an isotropic radiator. Anisotropy is in the

reverb /NMO interaction.

As an equation for modeling seismograms, (1) is very simple. But inversion is more
difficult than modeling and (1) provides a more detailed physical model than ordinarily
underlies deconvolution. The model could be further generalized to reflection coefficient
as a function of angle by changing NMO to a generalized radial trace moveout. The
experimental study at the end of the paper suggests that the most significant factor not

incorporated in (1) is the different moveout velocities of different events.
Invert (1) by premultiplying in turn by the inverse of each of the operators.

(1 - reverb) NMO t (1 - bub) data = random (2)

Both bub and reverb are unknowns to be solved for. Linearize (2) by neglecting the

product of these two unknowns.
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NMO ¢t data — random = reverb NMO t data + NMO ¢ bub data (3)

To implement (3), the unknowns, bub and reverb are taken to be filters with a gap

separating them from the unit pulse, i.e. in Z-transform notation, they are typically of

the form:
bub or reverb = aZ¥+ay 2" 4 o 4, 2% (4)

If we have difficulty with the linearization, we increase the gap 15 thereby decreasing the
predictability hence decreasing bub and reverb and their non-linear product. When-
ever the bubble is estimated, it can be removed and the process can be repeated with a
smaller nonlinear product. Thus the 15 can gradually be reduced (theoretically) to a
smaller gap. In practice I haven’t done this. I have been more concerned with testing

many data sets than with crafting the best job on a single data set.

Equation (3) is representable as an output power minimization merely by asking
sum squared of random to be as small as possible. Thus random is the prediction
error. By the usual techniques of least squares analysis, this may be written as an over-

determined system.
NMO t data == reverb NMO ¢ data + NMO t bub data (5)

This is not so simple a thing as a two-channel least-squares prediction problem. We will
need to use an ordinary simultaneous equation solver such as conjugate gradients
method. Let us see how (5) can be represented with matrices. Define d = data,
d' = NMO t data, r a dereverberation filter, and & a debubble prediction filter. Let

* denote convolution. The regression (5) becomes

d' = r *d' + NMO t b * d (6)

As matrices in (6), ¢ is a diagonal matrix with the divergence correction ¢ along its
diagonal. Likewise, the NMO matrix is a square matrix, identical to a (z, t )-plane
containing all zeros except an interpolation operator centered along the hyperbolic tra-
jectory v?t?= z%4z2

The convolution & * d is representable as a matrix times a vector in either of
two ways. First, like FGDP equation 7-1-1, the seismogram enters the matrix repeat-
edly, as a succession of down-shifted columns. Alternately, the filter could enter the
matrix as a succession of down-shifted columns. When I look at (6) I think of the filter
being in the matrix. When I implement (6) in an optimization program to solve for the
unknown filters r and b, I think of the dafa being in the matrix, and the filters r

and b being column vectors, that is, I rewrite (6) as
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d' ~ [d'*]r + NMO t [d *]b (7)

and think of [d *] as one of those down-shifted column matrices. The prediction gap
enters by the downshift of the data within the matrix. The regression (7), is the main

point of this paper. All my field data tests were implemented with (7).

The regression (7) applies to divergence-corrected moveout-corrected data. Alter-
nately the regression my be formulated on the raw data. Operating on (7) with
t L NMO™ yields

i ~ %NMO‘I[(NMO td)*]r + [d *]b

d o~ [d*)b + %NMO‘l [d' %] r (8)

Wedge weights

Multiple channels are incorporated by placing matrix equations like (7) [or (8)]
beneath one another. Additionally, the conjugate-gradient method allows systems like
(7) to be multiplied by weights. Weighting functions in the (¢, z )-plane could be any-
thing. The most basic weights are simply windows, i.e. functions whose values are
either zero or one. Typically these windows are wedge shaped like mute windows. They
select portions of the data that can be expected to have a common dereverberation filter,
typically the space between two separated radial traces. So, a weight function for a typ-
ical z is a box-car function of ¢. This box-car function may be placed on the diagonal
of a matrix and premultiplied onto (7). Placing systems like (7) beneath one another to
allow many channels, places many different box-car functions end to end along the diag-
onal weighting operator. With these interpretations in mind, for a weighted multichan-

nel estimation we write
W {d'" =~ [d'*]|r + NMO t [d *]b } (9)

Now let us generalize the method still further. Since reflection coefficient is a func-
tion of angle we may want a different reverberation filter in different wedge shaped win-
dows in the (¢, z)-plane. But the problems in different windows are not independent,
because the bubble filter should be the same. For two fitting windows we have the two

overdetermined systems to solve simultaneously:

Wo{d' = [d'*|r, + NMO t [d *]b } (10a)
Wo{d' =~ [d'*|ry + NMO t [d *]b } (10b)
SEP-42
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The set (10a,b) is a ready extension to my computer program. Since the number of
iterations is always taken to be 10 regardless of the number of parameters being sought,
the cost of adding on (10b) increases the cost by less than a factor of two. But I haven’t
done it, because I am unsure which of many generalizations will be most useful. The

answer seems largely data dependent.

Exotic domains

In a program for the regression (10a,b), normal moveout correction can be changed
to radial-trace moveout correction. This is a more natural direction for the prediction,
lowers the cost of (10a,b), but complicates the issue of missing channels. Likewise we
could go to the slant-stack moveout domain to acquire some well known theoretical

advantages (FGDP) when several velocities are present simultaneously.

These “exotic”” domains often introduce practical difficulties transforming back to
the original physical domain. Nobody likes a lot of artifacts in their data. The trick
here is to return from the exotic domain not with the prediction error but with the pred-
iction itself. Since the prediction power should always be smaller than the data power,
the miscellaneous errors of transforming to and from the exotic domain are also weak-
ened. This is a reason to base the regression on (8) instead of (7). The regression (8)
might seem to be more difficult because it involves inverse NMO instead of NMO, but I
don’t think this really makes it significantly more difficult. Probably transpose NMO
would work as well as inverse NMO anyway. Had I considered these factors at the time,

I would have based my program on (8) instead of (7).

Surface consistent decon

One way to implement surface-consistent deconvolution is as a “round robin’ of
surface deconvolutions. A more elegant approach is for computations within the con-
struction of the decon filters to be surface consistent. For example, the familiar Levin-
son and Burg methods sum numerators and denominators (which divide to give the
reflection coefficients). The sums ordinarily include only a single trace, but they could be

extended in a surface consistent way.

There is a filter xg(s) for every s and a filter xs(g) for every g¢. Let
[A(s, g)*] denote convolution over ¢t for each s and g¢. Likewise [* A(s, q)]
denotes the transpose to convolution. The inner part of the conjugate gradient itera-

tions would look like:
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loop on conjugate gradient iterations
loop on geophone
loop on shot
if not transposed
y8(s) = ysg(s) + [A(s,g) *] xg(s)
ys(g) = ys(g) + [A(s,5) *] xs(g)
if transposed
xg(s) = xg(s) + yg(s) [* Als,g)]
xs(g) = xs(g) + ys(g) [* Alsg)]

EXAMPLES

Hard bottom data from Canada

Figure 0 shows a marine profile from Canada (Yilmaz and Cumro #27) after t°
gain and NMO. The center panel was also deconvolved before the NMO. The deconvo-
lution process estimated a single filter for the whole profile. The estimation process used
portions of five traces shown in the right hand panel. From the right hand panel, you
can see that the portions used were all in a small propagation angle wedge, and that 4
out of 5 traces were ignored in the estimation process (to speed the program). The filter
is displayed aside the deconvolved profile, and you can see the 60ms gap between the
leading spike and the regression coefficients. Subjectively, the results of the deconvolu-
tion are excellent near zero offset, but they deteriorate with offset. Objectively, the
power in the output is substantially less for the inner traces after deconvolution. At late
times we notice that the deconvolution has also worked somewhat beyond its fitting

interval, which is encouraging.

Figure 1 repeats the calculation of figure 0, but the deconvolution was done after
NMO. The results are of the same general quality within the fitting wedge, but the vali-

dity outside the fitting interval now extends much further. This is really encouraging!

Figures 2 and 3 repeat the experiments of figures 1 and 2, but the fitting is centered
about a large angle. We see the same general results with the quality of the deconvolu-

tion now deteriorating toward vertical incidence.

The experiments of figures 1-4 showed that for this data, the results of dereverbera-
tion were more impressive than the results of debubbling. In figure 5, I chose a favor-
able set of weights for dereverberation. Figure 6 sets up the same weights for simultane-

ous debubble and dereverberation. We see the debubble filter is slightly smaller than
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the dereverberation filter. It is disappointing that the simultaneous deconvolution is not

perceptibly better than simple dereverberation.

In the time remaining before the report deadline, a number of other experiments
were tried, though none of them were particularly conclusive. In figure 6, the fitting
region was passed all the way through the first arrivals into the region where the NMO
stretch is extreme. This didn’t seem to hurt anything. The output power is clearly

reduced near the first arrivals, as it should be.

The Backus filter may be expressed as (1 + ¢Z)? the square refering to reverbera-
tion at both the shot and the geophone. In figure 7, I doubled the length of the derever-
beration filter, to test the idea that it had been too short. The resulting filter does
indeed resemble the Backus function (1 + 2¢Z +c¢22?), which is encouraging, but the

quality of the deconvolution has not been Subjectively improved from previous figures.

A variety of other ideas were tested, but not shown, because the results were not
conclusive. For example, the appearance of the data before NMO suggested that the
bubble function is really long, perhaps 1.5sec. On the test I made, I found that subjec-
tively, the bubble in the data appeared to be longer after I removed it than before. This
is the result of too many degrees of freedom. Some kind of spatial filtering incorporated

in the deconvolution estimate might help.

I still feel optimistic about achieving a convincing extraction of bubble and derever-
beration from this data. The remarkable flexibility of the conjugate gradient approach
enables us to construct the more complicated models that seem to be required for this
data set. For example, surface consistent thinking suggests that this single profile
should be dereverbed with two filters, a shot filter which is constant across the gather, as
in this study, and also another filter that is allowed to vary from trace to trace, because
successive geophones see a different sea floor. Of course with all these extra filters, there
are potentially a lot of extra degrees of freedom, but I think there are realistic ways of
limiting this difficulty.

None of the deconvolutions was good enough to fully suppress the peglegs at 1.7sec
and at 2.4sec. [ attribute this to a significant feature of this Canadian marine data that
was not incorporated in the model. There are clearly observable differences between the
velocity of primaries, peglegs, and seafloor multiple reflections. Studying the peglegs
that were not removed completely, you can observe that the reverberation period
lengthens by a half wavelength at wide offset. So a more complicated model is called

for.
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Other data

Seven other field profiles were tested, none giving such clear results as the Cana-
dian data, so the results are not shown. One was John Toldi’s Chevron Central Valley

data, and six were taken from the Yilmaz and Cumro catalog. These were

01  South Texas vibrator
08  Central America, dynamite
09  Alaska vibrator
13 Offshore Louisiana  airgun

14 Offshore Texas Aquapulse
39  Middle East Geoflex

Deconvolution, unlike migration, is mainly a study of the earth’s surface, which is
extremely variable from place to place, so although positive results were not obtained, I
do not feel that good results cannot be obtained, only that more work will be required
and results will be more modest, or that results may be good, but not self-evidently so.
For example, the land data sets generally have ground roll and I did not have time to

assure the ground roll was excluded from the fitting region.
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Fig. 4. Decon after NMO displayed after NMO.
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Fig. 5. Deb'ﬁi)mweighted away from zero offset.
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Fig. 6. Dereverb weighted away from zero offset.
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Fig. 7. Dereverb with a larger fitting window.
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Fig. 8. Simultaneous dereverb and debubble.
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Fig. 9. More anisotropic decon, fitting everywhere.

before decon

after decon

weight window

2 3
222 ey
Vs IS SiRGide

SRRy, W(’ ; »
il
€ ( (e rr,'q e

e

COOECTrOrT O
Sy Z =

-?5 »»)‘; ?(’);:

”

8 AN

CCC

[
G 35%:::
=5
(s (

&*ﬂ 5

s T
A is
s &

r(,

>

: I

COTTTLCCC e e

g

(CC( S

>

”"'ﬁ:ft-?<f((< Athdicies )

i

—‘ —————— oo

——————I




Fig. 10. More anisotropi;'decr:gni, double length dereverb filter.
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Claerbout

tr-decon
Fig 0. Single filter/profile deconvolutions
Decon before NMO displayed after NMO
before decon after decon weight window
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Claerbout tr-decon

Fig 1. Decon after NMO displayed after NMO
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Claerbout y
-decon

Fig 2. Debubble weighted away from zero offset. 5
before decon after decon weight window
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Claerbout tr-decon

Fig 3. Dereverb weighted away from zero offset.
l before decon after decon weight window
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Claerbout

Fig 4. Dereverb with a larger fitting window.

before decon

after decon

tr-decon

weight window

il |

‘ 5»)..,/
e ,l

2 »»5?3 '

NGt
AR
|(;.7>’,..”“("‘/
A "

Ry 14 ?
WW”W
1) ?ln‘ S%)

e,

e Gt y f((
N ._\ww';g‘( P

o TR ;z

e ﬁm

(((( [ o

M»»»}‘:}’_ 5,

. LTI
] \ ’
SR
ﬂ% ))) 3)( > .

)/b))

A e il
%;&W idy iﬁi)@’ , W@ﬁ?}g
! { s
»;> s I
91”3‘?’1” R T
e
’ gg&g e {{@ e




-

Claerbout

Fig 5. Simultaneous dereverb and debubble.
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Claerbout tr-decon

Fig 6. More anisotropic decon, fitting everywhere.
before decon after decon weight window

Rl U X
?f!lsnm:m et

. i
g

DITEDPRIPORII ) ) 91!
it ( )(’,'“" e
4 | o (o e > 4
s
4

+
t
t
f e,
e e omec— 3 1 T T 1 +
T T ! 1 T T T
: 1 t & T T } ' I

i dansag 4ol G eerrd; ) ?
r,ﬁ »i«.r~~. ; R e 2 C ™I ) il
m,rr.;'"w T
e n S | ) Bl »

™ H’(r“ T
= J)@ o »’ﬁ, ) ’ 1,(\»» ;
] - e L€ e (
MW"((

Wl >>m il lmrﬁ

e ’g,(‘,(i‘){\‘((<‘r o ( R % ()), {-:v ( > e ()))%

————
. ‘/’((e((‘( ¢ l\‘ o aapd CCCC L ’ K»v ”\
!!::: ‘).‘m ) ety ; ; Lt m;@ ' e ’
] b)) ( iy ) - G 1{2&1 (G
DO [yl ottt ’,k, o, h, il 3 >
U-l P(( ) 3’”’:»*& ( »!fg) (‘} » !} )?;&”)) ; A '}é{é
o etal, ], )N R Y > »
g ) 7 ) HIPSpin, )
e A i

N Gicarin e fra: > ? /')h Fé)( ey
/m!».;:..‘»z”“‘ (et o S s sﬁiswm@ e {%gﬁﬁ
Bttt e hos '(“: 4 s th}ﬁm 2 ?)} ﬁg&l




Claerbout tr-decon

Fig 7. More anisotropic decon, double length dereverb filter.
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Soviet Industry Grows Its Own Potatoes

By Viabrmm KONTOROVICH
And VLADIMIR SHLAPENTOKH

The most consistent pessimists on the
prospects for the Soviet economy are to
be found not in the West, but among many
Soviet managers and economists them-
selves, They gloomily attribute economic
stagnation to the vested interests of the bu-
reaucracy, which resists any serfous or-
ganizational change and seems itself im-
possible to dislodge. However, dynamic
forces in the “informal economy’’ may yet
at least stem the decline. -

“This inforrhal economy must be distin-

. guished «both from the officlal economy,
where everything is done In accordance
with the law, and trom the “second econ-
omy;" the underground sector in which
participants are absorbed in personal en-
richment. The Informal economy Is the
sphere of economic activity in which So-
viet managers seek to achieve official, le-
gal goals—above all, the fulfiliment of the
plan.-tmpughgmegal means.

The Ipformal Soviet economy is, to

.some d » feminiscent of the European
absolute monarchies of several hundred
ybary ﬁﬁ#men-emerﬂng capitalist
class employed thousands of tricks to com-
bat the countless royal rules that blocked
economic growth. Today, Soviet managers
similarly seek to outsmart the authorities
In order to Increase production and imple-
ment technologital innovations. Some of
the most significant procedures are those
used to cope with procurement problems,
the devices used to prevent production
stoppages resulting from the caprices of
numerous suppliers. .

As Is commonly known, Soviet indus-
tries are plagued by the problems of inade-
quate and late supplles. Factories and
workers often sit idle, or function well be-
low capacity, due to the unavailability of
raw materials or replacement parts. In
consequence, the pace of work is fre-
quently erratic, with work forces scurrying
furiously to get out one month's production
in a few days, after awaiting the arrival of
some needed supplies. Despite these diffi-
culties, managers are still held account-
able for meeting production plans, which
often results in fabricated reports showing
that plans have been fulfilled.

The informal economy' helps to solve
these problems in two, essentially opposite,
ways. One is the trade (usually batter)
between enterprises. This serves to correct
planners’ errors, as enterprises exchange
things they have received but do not need
for things they need but were allocated to
others. A market mechanism, pushed out
of sight, thus helps the planned economy to
function, .

Another no less widespread method of
informal decentralization is more unortho-
dox. Whtle conventional entrepreneurs see
the division of labor as natural, Soviet
managers boldly defy Adam Smith’s pre-
scriptions and tend to diminish this divi-
sion as much as possible.

Enterprise directors cut their depen-
dence on unreliable outside suppliers by

setting up In-house production of every-
thing Imaginable. Plants, both large and
small, design and produce equipment for
their own use. Moreover, they manufac-
ture most standard parts for their own
equipment, such as castings. For example,
a Volga automobile plant not only makes
robots for its own use, but also produces
Integrated circuits for them. A shoe plant
could be mistaken for a machine factory or
a chemical plant, since it makes its own

equipment and glue.

This enterprise autarky is most wide-
spread in the repair and servicing of equip-
ment and the production of spare parts,
functions traditionally ignored by central
planners. But the construction of buildings
may be done by enterprises themselves,
and transportation by their own fleets of
trucks. The management of a refrigerator
rallroad car repair depot In one city is
planning to build an electric generating
station, since the state power network suf-
fers from frequent blackouts.

Autarky is spreading even in the com-
puter industry. As a recent article in Li-
teraturnaya Gazeta suggests, computer
centers rely less and less on the assistance
of speclalized firms and create their own
programs, as well as repair computers
themselves or with the aid of free-lance

spectalists. Th tor of one of the
Fﬂeggmuac ers i :
%. at the Stberian section of the Academy
of Scien

W,,&L-Cﬁ-lh for all of his colleagues to
ve toward '‘self-service." ’

Many enterprises are also increasingly
producing goods and providing services for
their own workers. In urban *agricultural
shops,’ workers and engineers grow vege-
tables and ralse cattle that they consume
themseives. In the industrial region of Ke-
merovo, some 40% of potatoes are pro-
duced by industrial enterprises.

Of course, these in-house factlities also
need materials and equipment. These are
taken out of planned allocations for other
purposes, or are obtained through barter
with other enterprises. Indeed, in-house fa-
cllities may even produce goods for the
purpose of barter. In this way, the infor-
mal market and informal! autarky rein-
force each other.

The informal economy proves that So-
viet managers, officia]ly merely em-
ployees executing orders from above, pos-
sess a great deal of entrepreneurial spirit.
The level of Innovation undertaken by
many of these managers is, in the Soviet
context, quite Inspiring.

Soviet planning officlals and political
leaders, however, condemn enterprise au-
tarky, for it contradicts one of the funda-
mental principles of economics: The ad-
vantages of the division of labor. They cite
standard metalworking products, 70% of
which are produced in specialized plants in
the U 8., while only 3% to 4% are so pro-
duced in the U.S.S.R. The costs of in-house
manufacturing have repeatedly been found
to be much higher than those of spectalized
plants. Equipment in the *‘auxiliary" shops
is also often poorly utilized. Thus, it is ar-
gued, as the division of labor increases
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productivity, the trend toward autarky
lowers it

In reality, the condemnation of enter-
prise autarky by Soviet leaders is purely
ritualistic. They are fully aware of the ben-
eficlal effects of these practices and there-
fore do not seek to suppress them and in
some cases may even encourage them.
The Soviet medla even depict managers
who establish in-house production as tak-
ing good care of their enterprises.

There Is indéed a case in favor of en-
terprise self-sufficiency. The greater the
division of labor, the greater the need for
the coordination of specialized producers,
and this coordination is not without its
costs. The larger the number of producers,
and the number of goods produced, the
greater the burden on central planners and
the higher the level of disruptions of supply
and production.

In our opinion, the increased produc-
tion costs of autarky allow the Soviet econ-
omy to avold still greater losses from inad-
equate supplies. The fact that the degree of
plant specialization in the U.S. is much
higher only means that the cost of coordi-
nation in market economies is much lower
than in planned ones.

Mr. Kontorovich lives in Haverford,
Pa., where he is a researcher on the Soviet
economy. Mr. Shlapentokh is a professor of
sociology at Michigan State University in
East Lansing.



