Axisymmetric Anisotropy I: Kinematics

Joe Dellinger and Francis Muir

INTRODUCTION

The assumption of isotropy pervades seismic data processing, and the presence of signifi-
cant amounts of anisotropy can call into question the standard geophysical models. General
anisotropy in three dimensions requires 21 elastic constants, and this seems beyond the resolving
power of our geophysical tools. However, the inclusion of the axisymmetry constraint reduces
the number of independent constants to 5, and would seem to provide a useful rock model, par-
ticularly in clastic basins, where azimuth-sensitive fracturing may be less of a factor than

gravity-controlled laminar effects.

NORMAL MOVE OUT AND ANISOTROPY...

...Or, if anisotropy is such a big deal, why has NMO worked as the basis for time to depth
conversions for 50 years?

Elliptic axisymmetric anisotropy adds the additional constraint that the impulse response
have an elliptic cross section. This uses up one more elastic constant, leaving only 4 free. This
special case is interesting because NMO appears to work perfectly with such a medium even
when it doesn’t. To see how this comes about, refer to figure 1. At the top a standard isotropic
earth is depicted. The lines under the “X” represent “meter sticks”, or some other arbitrary
unit measure. In the diagram a point source has produced a circular wave front which will soon
encounter the surface. Since the earth is isotropic, both the horizontal and vertical velocities are
the same. The moveout is given by the standard (except for the factor of 2) NMO equation

1= l/xT1 2. (1)

v
On the bottom we have the same diagram again, but stretched by a factor of o horizontally,
where 0 = v;/v, (about 1.4 for this figure). The formerly circular wavefront is now an ellipse.
By stretching our model we have created an elliptically anisotropic earth. Equation 1 still ap-

plies, but our unit of measurement for X has been stretched. To convert back to our original
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FIG. 1: Top: A representation of NMO in an isotropic earth. Bottom: A representation of NMO

in an elliptically anisotropic earth.

units we must scale the X of equation 1 obtaining

l/X
— 1 J(2y2+ 22
t - (=) + 22

In NMO, v and Z are to be determined from the variation of ¢t with X. Recasting our stretched

equation in its original form, we get

t= ;1;, /X2 + (Z—ZZ)z. (2)

Comparing equation 2 with equation 1, we see that NMO cannot distinguish an elliptically
anisotropic earth from an isotropic one with an apparent velocity as the real horizontal one and
with the apparent depth as the real depth multiplied by the ratio of the real horizontal to the
real vertical velocity.

In general axisymmetric anisotropy the elliptic constraint will not be satisfied. However, for

a broad range of angles an ellipse will usually fit the actual form of the wavefront quite accu-
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FIG. 2: Impulse responses with best-fitting ellipses for P waves for two shales. On the left is the
“Cotton Valley shale”, and on the right is the “Greenhorn shale”.

rately. In this case it is the best-fitting ellipse for near-vertical propagation that will determine
the NMO velocity.

In figure 2 are the computed impulse responses for P waves for two shales. The view shown
is a “cross section”. Since the shales were found to be transversely isotropic, any one cross sec-
tion is the same as any other. This allows us to display the three-dimensional impulse response
in only two dimensions. On the left is the computed impulse response for a shale from east
Texas called the “Cotton Valley shale”. Its elastic constants were measured by C. A. Tosaya
(1982). On the right is the computed impulse response for a shale from the Greenhorn forma-
tion in the Williston basin which we will call the “Greenhorn shale”. Its elastic constants were
measured by Jones and Wang (1981). The two are shown to the same scale. The dotted line
represents the best-fitting ellipse which determines the NMO velocity. Let us call the “apparent
anisotropy” the ratio of the NMO velocity to the real vertical velocity. For the Cotton Valley
shale this is 1.195 for P, .742 for Sy, and 1.162 for Sp,. For the “Greenhorn shale” it is .948 for P
1.882 for Sy, and 1.401 for S;,. Note that the apparent anisotropy for P waves tends to be

)

smaller than that for S,. If these two shales are typical, then it may very well be that even in

the presence of strong anisotropy, P waves will often not appear anisotropic to NMO.

Before proceeding, it may be useful to refer to appendix 1 for a short review explaining no-
tation. It may also be useful to refer to appendix 2 where the relationship between group

velocity and phase slowness is discussed.

DIAGONALIZING THE WAVE EQUATION

The Christoffel equation is simply the wave equation Fourier transformed over every possi-

ble variable. The general 3-dimensional form of the equation is quite complicated. In the case of
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axisymmetry about the z axis, however, it simplifies considerably to

Cu1kZ + CeekZ + Cygk? (C12 + Ceg)kxky (Cis + Cyq)kxks Uz Vg
(C12 + Ceg)kxky Cesk2 + C11k2 + Cyqk? (Cis + Caa)kyk, vy | = pw? | vy
(Cis + Caq)kxk, (Cis + Caa)kyk, Cysk? + Cyqk? + Cysk? | | v, Uz

Here Cj2 is not a free parameter, it is given by C12 = Cy; — 2Cgg. Vv is the particle velocity vec-
tor. The 3x3 matrix on the left side of the above equation is the Christoffel matrix. An
eigenvector of this matrix gives the particle motion direction of a wave propagation mode, and
the corresponding eigenvalue determines the velocity. The symmetry of this matrix implies that
this equation has a complete set of orthogonal eigensolutions. This symmetry is a consequence
of the symmetry of the stiffness matrix, which is required by energy conservation.

kz, ky, and k, define a plane wave travelling in a particular direction. Axisymmetry implies
that the z and y directions are equivalent. It is redundant to use both spatial coordinates. We
will arbitrarily set k, = 0, thus confining ourselves to the 2-dimensional cross section containing
the z and 2z axes.

Since we are dealing with non-dispersive media, only the direction of the plane wave deter-
mines its velocity, not its wavelength. This can be incorporated into the notation by letting
k. = ky/s and k, = kv/1 — s, where s is the square of the sine of the angle between the direction
of propagation of the plane wave and the symmetry axis (that is, s = sin® ¢,,), and 1 is the
wavelength of the plane wave.

Unfortunately, this change of variables loses the sign of k, and k,. However, examining the
Christoffel equation we see that changing the sign of k; merely changes the sign of vz, and that
changing the sign of k, merely changes the sign of v,. The zy and zy planes are mirror planes,
and there is no loss of generality if we force k, and k, to both be positive.

Incorporating this change in notation, the Christoffel equation becomes
Cuis+ Cyy(1 —s) 0 (Ci3+ Caa)Vs(1=58)] [v: , |V
w
0 Cees + Cyq(1 — s) 0 v | = p(Z) vy |- (3)
(013 + C44)\/Si 1-— Si 0 Cyss + C33(1 - S) vz v,

It is convenient to use prescience and make several convenient changes of variable at this

point. We will let

6 = Cs3 — Cyq4,
€ =Cp — Cy4,
n = Ces — Cu4,
and
z2=Cy3+ Cyq4.
SEP-42
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We can also identify the term % in equation 3 as the velocity V,, of the plane wave whose
direction of propagation is determined by s. In terms of these new variables, the Christoffel

equation becomes

€8+ Cyy 0 z\/sil —si v, vz
0 s+ Cyy 0 vy | = p Vo2 vy |- (4)

z2y/8(1 — s) 0 —bs + Cgg v, v

One obvious solution of equation 4 is found by setting v, and v, = 0. Doing this, we obtain

Vg 0
ns+Cy=pVy,? and vl|=c|l], (5)
v, 0

where ¢ can be any arbitrary constant.

This is a pure shear mode, since the direction of propagation is always perpendicular to
that of the particle motion. In standard terminology this propagation mode is called an S;, wave.
Note that the phase slowness curve for this wave type is always elliptic. For reasons stated in
appendix 2, this implies that the impulse response for this mode is also always elliptical. No
matter how anisotropic the media may be, Sy, waves will always have hyperbolic move out.

Since any two different eigensolutions are guaranteed orthogonal, the other 2 solutions of
equation 4 must have v, = 0. Substituting this in, we remove the solution we have already found

and equation 4 reduces to

6
2v/8(1 —8) —6s+ Css (6)

The solution of equation 6 is:

€84 Cuu z\/s(l—s)] [vz] - [vz].

%((Css + Cy4) + (C11 — Cs3)s + m\/(s(5 +¢€) - 6)* +4s(1 - s)zz) = pVy?

and

Ug 22¢/8(1 - s) @)

vwl=c 0
vy m\/(s(ﬁ +e)—86)2+4s(1—8)22 — (6+¢)s+6

)

where m is either plus or minus one and ¢ is once again an arbitrary constant.
The sign of m selects one of two propagation modes. Although not obvious from equation 7,

the particle motion directions for these two propagation modes are always perpendicular. One

important thing to notice is that the phase velocity for the m = 1 solution is always greater than

that for the m = —1 solution for any s. Our isotropic intuition would suggest that the m = 1 so-
lution must be approximately a P wave and the m = —1 solution approximately an S, wave.
SEP-42
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This is only true for materials reasonably close to being isotropic. To avoid bias, we will instead
refer to the two solutions as the “fast” and the “slow” wave solutions.
Particle motion directions for these two wave types will be considered in detail in a following

section. First, however, we shall find physical realizability constraints on the elastic constants.

ENERGY CONSTRAINTS

No energy should be produced by straining a material away from equilibrium. As shown in

appendix 1, the strain energy density is given by
lor
E = 2 S*.C-8S,

where C is the stiffness matrix. The requirement that the energy E be positive for any arbitrary
non-zero strain S is exactly the requirement that the matrix C be positive definite. For an

axisymmetric medium this matrix has the general form

Ciz2 Cii Cis O 0 0

Cis Cs Cs3 0 0 O (8)
0 0 0 Cy4 O 0 ?
0 0 0 0 Cy4 O
0 0 0 0 0 Ce|

where Clz = Cu - 2066-
Requiring the stiffness matrix as shown in equation 8 to be positive definite is equivalent to

requiring that the following set of inequalities be satisfied:
Ci1>Ce >0, C33>0, Cy>0, and C%; < C33(Cyy — Ces). 9

In the isotropic case there are only two free elastic constants, C;; and Cy4, and the

isotropic energy constraints are:

3
ZCH > Cqe 2 0.

Since Cy; and Cy4 determine the isotropic P and S wave velocities

C
V=[S ana v, =,/
p P

in the this case P waves are always faster than S.

In the axisymmetric anisotropic case C44 (but not Cgg) is allowed to be greater than Cy;
and Cg3s. As will be seen in the next section, as a consequence some kinds of S waves can actu-
ally have a higher velocity than P waves travelling in the same direction. This is an important
difference from the isotropic case. Such a phenomenon cannot occur in that case because Cyy

and Ceg are forced to be equal. The isotropic constraint on Cyy is really one on Cg¢ and Cj3.
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PARTICLE MOTION DIRECTIONS IN AXISYMMETRIC MEDIA

As we have already seen, one wave propagation mode is an S;, wave. Particle motion in this
mode is perpendicular to both the z axis and to the direction of propagation. In the rest of this
section we will be concerned with the other two solutions of the wave equation under
axisymmetric anisotropy.

The particle motion directions are given by equation 7, but in an inconvenient form. It is
better to write the formula in terms of the angle between the direction of plane wave propaga-
tion and the direction of particle motion. Let us call this angle ¢, and let a be the square of the

sine of this angle. Then (after a great deal of algebra):

(28 = 1)t1 — 12) /82 — a2

_ 1
a=m 2(tz2 - t2) T
where
(10)
1 = 8(5 + E) )
and

ty = 4s(s — 1)z.

Note that since the eigensolutions are perpendicular, a|n=1 + a|m=-1 = 1.

Pure modes

Solving equation 10 to find when a is O or 1 yields conditions for the existence of pure P
and Sy modes, respectively. The result is that pure P and S, modes occur for 3 values of s:
(6 - 2)
s = . 11
(6—2)+(e—2) (11)

We shall consider the case s = 0 first. This corresponds to a plane wave travelling along the

s =0, s=1, and

axis of symmetry. As shown by Auld (1973), waves travelling down a symmetry axis must al-

ways be pure modes. This is indeed the case we find here. There are two solutions, a pure P

. . C . . C . . .
mode with velocity {/ —j—{, and a pure S, mode with velocity \/ %. There is an interesting com-
plication here, though. The fast solution given when m = 1 is the P one only if § > 0 (that is, if
Csz > Cyy). If § < 0, the fast solution is in fact the Sy one.

The case for s = 1 is very similar. Again we find that there are two pure modes, a P one

with velocity 9—;, and an S, one with velocity C—;‘-. The fast solution can again be either the
P or S, mode, whichever is faster.

The third pure mode direction given in equation 11 does not lie on any symmetry axis. It
only exists if 6 — z and € — 2 have the same sign. For this pure mode direction, if z is positive
the fast solution is the P one and the slow solution is the S, one. If z is negative, it is the other

way around.
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FIG. 3: The particle motion and impulse response of the fast solution for three different values
of Cy4, with Cyy increasing to the right. The lines indicate the directions in which pure modes

exist, and the “hairs” show the direction of particle motion.

Particle motion behavior

From what we have concluded so far it is clear that if any of §, ¢, or z is negative the parti-
cle motion must exhibit strange behavior. If exactly one of § and ¢ is negative, for example, the
same solution that is a P wave at s =0 is an S, wave at s = 1, and vice-versa. If § and ¢ are of
the same sign but z is not, then the solution that is a P wave at both s = 0 and s = 1 is a pure
Sy wave somewhere in between! It is for such reasons that we cannot call the fast solution
“Quasi-P” and the slow solution “Quasi-S,”, as is usually done in the literature.

Energy constraints do not permit §, ¢, and z to all be negative at the same time. This has
the result that although the fast solution does not necessarily have to be close to a P wave for
every angle, it does always have to be a pure P wave for some angle.

The three different sorts of particle motion behavior possible are shown in figure 3. All
three are the impulse response for the fast solution, to the same scale. Cyy is the only elastic
constant that varies between them. z is positive for all three. None violate energy constraints.
From left to right, the cases are: 1. both § and € positive, 2. § negative and € positive, and
3. both § and ¢ negative. Also possible, but not shown, is the case where § is positive and ¢ is
negative. In this case the particle motion is approximately vertical all the way around. Allowing

z to be negative does not add any new types of behavior.

Putting the sign back in the sine

Equation 10 is concise and in a convenient form, but is not useful computationally because
it only gives the square of the sine of the angle of interest, ¢,. We will measure ¢, as positive in
the same direction that ¢, is positive. As always, we assume that ¢,, is between 0° and 90°.

Let s3 be the third pure mode direction of equation 11. We will assume that z is positive,

and refer to the angle for the fast solution. Then, if € > z and § > 2, ¢, goes from negative to
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positive as s goes from O to 1, with ¢, changing sign at s = s3. If ¢ < z and § < z, ¢, instead
goes from positive to negative, again changing sign at s = s3. If e > z and § < 2, ¢, is always
positive; if € < z and § > 2, ¢, is always negative. If z is negative these same rules apply but we

must reverse the given sign of ¢, and refer to the angle for the slow solution instead.

Very interesting, but is it real?

Some of the particle motion behaviors described here seem physically unlikely. However,
some crystals are known to display quite perverse behavior. Auld, for example, examines one in

his book (1973). Intuitively unlikely does not mean physically impossible.

BEHAVIOR OF THE IMPULSE RESPONSE AS A FUNCTION OF C;s

Cis has no part in determining either the vertical or horizontal velocity of either the fast or
slow wave types. It controls the type of behavior in between, however, which is what makes it
the most interesting elastic constant. (Note that Cy3 does not occur in any of the equations

governing the Sy, wave solution at all.)

Elliptic constraint

For the phase slowness and thus the impulse response to be an ellipse, V,,2 must be a linear

function of s. Recalling equation 7,

2pVy? = (Css + Cua) + (e — 8)s + m\/(s(& +€) — 6)% 4 4s(1 — 8)22, (12)

we see that this can only occur when the quantity under the radical is the square of a linear

term that maintains the same sign over the interval O to 1. This occurs when either
z=1Vée (fde>0) or 2=0 (if §e<0). (13)

If 6 and € are both negative, there are no solutions of equation 13 which are not prohibited
by the energy constraints. This is easy to prove by showing that the minimal allowed value of 22
is too large. However, if Cgg is small, C;; and Csg are near in value, and Cj3 is as negative as
allowed, ellipticity can still almost be reached.

If equation 13 is satisfied, both the fast and slow solutions will have an elliptical impulse re-
sponse and dispersion relation. If § and € are both positive, the slow solution will in fact be

circular. However, the particle motion will not be isotropic.

Types of behavior

The square root term causes deviation from an ellipse. It is this deviation which creates any

interesting behavior of the phase slowness curve.
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Under the square root is the sum of two terms, each of which is always positive. The second
term is zero for s = 0 and s = 1 and maximal halfway in between. The first term is maximal at

8=0and s =1, and if § and € have the same sign, it passes through zero at

6
st—6+€. (14)

The magnitude of z determines the relative weight of the two terms. If z is small, the first
term dominates. This causes the phase slowness curve to bulge in for the slow solution and out
for the fast solution at s = s;. If § and ¢ do not have the same sign, this term never passes
through zero and so there is no resulting bulge. If z is large, the second term dominates. This
causes the phase slowness to bulge in for the slow solution and out for the fast solution ats=0
and s = 1.

This behavior is demonstrated in figure 4. The plot consists of two sections. The upper set
of ten plots are dispersion relations; the lower set are their corresponding impulse responses.
The light line is for the fast solution; the dark line is for the slow solution. All plots are to the
same scale. z increases from left to right and top to bottom. Let us number them from 1to 10
in this order.

Plot numbers 4, 6, and 9 have no special properties. They were inserted merely so that ad-
Jjacent plots would not change too much. The rest of the plots, however, were chosen for their
special properties. These are:

1. 2=0. In a sense this is the “minimal” value of z, because only 2% occurs in the formulas.
For this value the dispersion relation consists of two interlocking ellipses, with the slow solution
traversing the outer parts and the fast solution the inner. Note that the vertical ellipse of the
dispersion relation corresponds with the horizontal one of the impulse response, and vice~versa.
In the direction s;, the fast and slow solutions Just touch. Unless Cy; or Cs3 equal Cyy, this is
the only case in which the two solutions can do so.

2. Reality. These figures were calculated using the elastic constants of the “Greenhorn
shale”, but allowing C;3 to vary. This figure is plotted using the real value of C;35. Note that the
fast solution triplicates for this rock.

3. Here the dispersion relation of the slow solution is on the borderline between being con-
cave and convex. As is shown in appendix 2, points of concavity of the dispersion relation are
associated with points of triplications of the impulse response. “Borderline” triplications such as
this one occur at angles where one of the two terms under the radical is zero. In this case it is
the first term, and the triplication is at s = s;.

5. For this plot the elliptic constraint is satisfied. Both the dispersion relation and impulse
response are circular for the slow solution and elliptical for the fast.

7. and 8. Again we are at borderline triplications of the slow solution, at the top for 7 and
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FIG. 4: Behavior of the dispersion relation (upper set) and impulse response (lower set) as a

function of C;s. The dark line is the slow solution and the light line is the fast solution.

at the sides for 8. This time it is the second term which is zero at the triplications. Whether
triplications first occur at the top or side depends on the relative sizes of C;; and Cgs.

10. Both this and the previous plot violate the energy constraints. A weaker constraint is
that the phase velocities must be positive for all s. This plot is just short of violating this
constraint. This occurs when C;3 > /C;;Cas.

Note that while the character of the slow solution changes dramatically, the fast solution
changes only slowly, and with no major changes in behavior. If we had continued to increase z,
the fast solution would have eventually also started to triplicate at 8 = s;. However, this value
of z is far outside the bounds of the energy constraint. This is in fact always the case, as will be
shown in the next section.

If € and § are not of the same sign, the behavior is similar to that shown here but one of
the two interlocking ellipses which occur in the first figure is missing, leaving a single ellipse.
(This is the second solution to equation 13.)

Figure 5 shows how the transition from two ellipses to one occurs. z is zero in all the plots.
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FIG. 5: Behavior of the dispersion relation (upper set) and impulse response (lower set) as a

-\

N

function of Cgg. The dark line is the slow solution and the light line is the fast solution.

6 and ¢ start out positive and equal. § is lowered in steps until it reaches zero in the second to
last plot and finally becomes negative in the last. All plots are to the same scale. None violate

energy constraints.

TRIPLICATIONS

It is difficult to migrate in the time domain if there are triplications, since energy can travel
in the same direction with more than one velocity. Thus it is important to know for what ranges
of elastic constants triplications do not occur.

From the previous section, we have a good idea as to the general shape of the dispersion re-
lation as a function of z. We thus know to look for at most three different s for which borderline
triplications can occur, and we know beforehand whether the values of z at each of these are up-
per or lower bounds. It is difficult, but straightforward, to derive analytical formulas that give

the exact bounds. The results will be presented here.!

The top and side case
dér

. T d2g, .
A borderline triplication occurs when and T:;- are simultaneously zero. For s = 0 and

s = 1 the second derivative is always zero be:ause of s;mmetry. Thus we need only solve for
when the first derivative is zero. Using equation 28 at the end of appendix 2 this is not too
difficult.

For s = 0, the result is that the fast solution can only triplicate if 2? is negative — which

means never. The slow solution triplicates when

+Cub, if &> 0;
2> { 1 (15)

—C445, if § <O.

!These formulas have all been verified empirically.
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For s = 1 the result is the same, except that we must replace § with € and C;; with Css.

The off—axis case

¢r

It is not obvious that the other triplication occurs at s = s;. It is hopeless to evaluate Z¢2 .
The only way we were able to solve the problem was by guessing that s = s; might be the )
required angle and showing that this indeed was the case.

We started by rewriting equation 28 at the end of appendix 2 in the form of a formula
whose sign indicates whether a triplication is occurring or not. This was evaluated at s = s;,
and after a great deal of algebra (being careful not to introduce unaccounted for spurious roots)
was simplified to a third-degree polynomial in |z|. The derivative of the formula with respect to
s was also computed and evaluated at s = s;. This ultimately resulted after even more algebra
in a fourth-degree polynomial, which was found to have as a factor the third-degree polynomial
already derived. Thus as a function of s our original formula had only double roots at s = s,
and so this was indeed the long sought after value of s at which borderline triplications occur.

Having thus proven our guess correct, the equation to solve is

|2|* + Alz| + B =0,
where
A= —(3Cj, — C33Cqyy — C11Cyy + 3C11Css) (16)

and
B= -—2m|Cqus — CE4|\/ be.

The solution to this polynomial is always of the form

|2| = 2my/—4 cos( 227K,

where
cos ¢ = 372 _2‘;3 (17)
and
K =0,1,2.
The K = 0 solution for m = —1 and the K = 1,2 solutions for m = 1 are spurious, since

|z| > 0 and these solutions are always negative. We know from the previous section that after
the slow solution begins to triplicate at s = s, it continues to triplicate for higher values of | 2|
until the energy constraints are violated. Thus the smaller of the two positive solutions of equa-
tion 17 for m = —1 must be the solution we want. This is always the K = 2 solution. The

K =1 solution must therefore always violate the energy constraints. For m = 1, only the K = 0
solution is not spurious. This solution is always larger than the K = 1 solution for m = —1, and
thus the fast solution cannot triplicate in any direction for any physically allowed set of elastic

constants.
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CONCLUSION

The fast solution is much more sensitive to the values of the elastic constants than the slow
solution is. As a result the same energy constraints which merely keep the slow solution within
the bounds of physical possibility constrain the behavior of the fast solution to a far greater ex-

tent. It may be for this reason that the assumption of isotropy has served geophysics so well for

so long.
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APPENDIX 1

REVIEW OF THE CHRISTOFFEL EQUATION

Review of notation

The wave equation for a homogeneous medium is derived in a cartesian coordinate system
by subdividing the medium into arbitrarily small cubes. The variables of interest are u, S, T,
and C. 2

u is called the particle displacement field. It gives the particle displacement as a function of
position. It is not a good measure of strain because it is nonzero for both translations and rota-
tions, neither of which deform the material at all and so should not be associated with strain.

So instead of using u to measure strain the quantity

1 0u;  Ouy
55() = 3 (Gm + 350) (18)

is used. The derivatives eliminate the effects of translations, while summing the two “symmet-
ric” terms eliminates the effects of small rotations. Since we are only dealing with tiny
deformations anyway, this is no restriction. S;; is called the strain matrix. u is measured in
distance units, whereas S is dimensionless. Note that S is always symmetric.

Now consider a unit cube. T;; represents a force in the +4 direction on the area element fac-
ing the +j direction. This is the stress matrix. It is measured in units of force per area. The
anti-symmetric part of T is associated with torque. However, particle rotation plays no part in
wave propagation. In the absence of external torque, the matrix T can thus be assumed
symmetric.

The strain resulting from a given stress is a property of the medium involved. For small
strains, the strain can be assumed to be a linear function of the stress. Since the strain matrix S
and the stress matrix T are 3x3 matrices, they must be related by a 3x3x3x3 tensor. The

elements of the tensor C are called elastic stiffness constants. Analytically,
Tij = CijriSu- (19)
C is measured in the same units as stress. The symmetries of T and S require that

Cijrt = Cjir = Cijix.

Abbreviated subscripts

Fourth order tensors are inconvenient to write down on paper. Usually T, S, and C are not

?Vector, matrix, and higher-order tensor quantities are identified by the use of bold type throughout this paper.
For example, a 3-vector X has 3 scalar components: X, Xz, and Xs.
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expressed with their natural subscripts but a compact notation is used instead. Symmetry al-
lows each set of two subscripts to be replaced by one, with no attention to the order of the two
subscripts: zz => 1, yy = 2, 22 => 3, yz,2y = 4, 2,22 =—> 5, and zy, yz => 6. Thus an
expression like C24 means Cy,,,, which we have already demonstrated is the same as Cyy,,. For
some of the strain components there are multplicative factors of 2 as well. This transformation
reduces T and S to 3-vectors, and C to a 6x6 matrix. The penalty for this conciseness is a loss

of elegance and simplicity in the equations involved.

Strain energy

Assuming a perfectly elastic material, all of the energy put in while deforming it can be re-
covered by allowing the material to return to its equilibrium position. The energy expended in
straining the material can be calculated in exactly the same way that the energy expended in
stretching an ideal spring can. For a spring, the work expended is the integral of force over dis-
tance. For a general elastic material the corresponding quantity is the integral of the stress
dotted with the differential strain. Mathematically, if ug, is the strain energy density associated
with the strain Sy, then

Se
ug, = / dsT.T.
0
Using the relation T = C - S, this can be rewritten as
So
ug, = / dsT.c.s. (20)
0

We will perform the integral in equation 20 along a path that goes directly from 0 to A and
then directly from there to So = A + B. For the part from O to A we get:

A 1
/ dST-C-S=/ AT.C.Atdt=1AT.C.A,
0 ()} 2
and for the part from A to A + B we get:

A+B 1
/ dST-C-S=/BT-C-(A+Bt)dt=%BT-C-B+BT-C-A,
A 0

for a combined integral over the entire path of
%(AT-C-A+BT-C-B)+BT-C-A. (21)

Instead of the path chosen we might just as well have gone from 0 to B to Sy = B + A instead.

In that case we would have gotten
%(AT-C-A+BT-C-B)+AT-C-B. (22)

The integral in equation 20 cannot depend on which of the two alternate paths we chose, for if it

did we could go from the equilibrium position to So by one path and back again to equilibrium
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by the other, and either create or destroy energy depending on which way we went! So the

quantities in equations 21 and 22 must be equal for all A and B. Since
AT.Cc.B=BT.CT-A,
this requires the existence of yet another symmetry property of the stiffness matrix, that
c=cCT.
Given this, the strain energy density associated with a particular strain Sy is
‘;‘ ST.C- S,

regardless of how the material reached that strain state.

In the most general case, the stiffness matrix possesses no more symmetries than those al-
ready listed here. This leaves only 6 + 5+ 4+ 3 + 2+ 1 = 21 independent elastic constants out
of the original 81.

The Christoffel equation

The wave equation can be derived from three basic equations. These are the
strain-displacement relation, relating S and u, the equation of motion, relating T and u, and
the elastic constitutive equation, relating T, C, and S. The first and third of these have already
been given above in equations 18 and 19, respectively; the second is simply a restatement of
Newton’s law. Typically the three equations are solved for the particle velocity v = %—‘tl.

If this is done, the result is of the form

62
M-C-MT-Vzpafv,
where M is a matrix of partial derivatives over the spatial coordinates. This can be fourier
transformed over all three spatial variables and time, resulting in a purely algebraic equation of
the same form. This is called the Christoffel equation, and the matrix M - C - MT is called the
Christoffel matrix. The eigenvalues of the Christoffel matrix are velocities, and the eigenvectors
are particle motion directions.

If a medium is symmetric under certain transformations of coordinates, then any mathe-
matical equation representing some property of the medium must also have corresponding
symmetries. Thus, for a given crystal symmetry group the stiffness matrix C (and thus the
Christoffel equation) can be simplified to take advantage of the symmetries that are present.
The more symmetries there are, the simpler the Christoffel equation for the medium becomes.
Christoffel equations for each symmetry group are given in appendix 3A of Auld’s book

Acoustic Fields and Waves in Solids, Volume I (1973). It can be shown by examining the stiff-

ness matrix that as far as elastic properties are concerned axisymmetry is equivalent to the

hexagonal symmetry system.
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APPENDIX 2

FROM THE DISPERSION RELATION TO THE IMPULSE RESPONSE,
AND BACK AGAIN

Group and phase velocity

The phase velocity associated with a given direction is the velocity of a plane wave travel-
ling in that direction. The group velocity associated with a given direction is the velocity of a
blob of energy travelling in that direction. Phase velocities are easier to calculate and more
tractable mathematically, but since infinite uniform plane waves are hard to come by in the real
world the group velocity is the more important quantity.

In axisymmetric anisotropy we need only specify the angle between the direction of propa-
gation and the axis of symmetry. This allows us to treat the problem as a 2-dimensional one.
We will label the group velocity V, (r for ray). It is a function of the group propagation an-
gle, ¢,. Similarly, we will let V,, (w for wave) be the phase velocity, and it will be a function of
the plane wave propagation angle, ¢,,.

The polar graph of V,, versus ¢,, the group velocity curve, is easy to picture physically. It
is a snapshot of the wavefront created by the explosion of an ideal point source. Mathematically,
it is the outer discontinuity of the point Green’s function of the wave equation which describes
propagation in the medium. The point Green’s function is also known as the impulse response
of the equation. It is important because any arbitrary source function can be easily decomposed
into a sum of weighted impulses. Since the wave equation is linear the sum of the weighted
impulse responses gives the wavefield produced by the original arbitrary source function.

A point source is mathematically equivalent to a source of plane waves which radiates
equally in all directions. On a small enough scale any piece of a wavefront (except at a caustic)
is indistinguishable from a plane wave. Since the group velocity curve represents the wavefront
created by a point source, the tangent line to the group velocity curve at any point represents a
single plane wave component radiated by the point source. We can find the velocity of such a
plane wave component by measuring the distance it has travelled from the point source. The di-
rection of travel of any plane wave is always given by the wavefront normal. (Uniform plane
waves can’t slip “sideways” as they travel, because motion in that direction makes no difference
and is ignored.) Thus, for each V, and ¢, we can construct a corresponding V,, and ¢,,. Mathe-
matically this entire process is merely integrating the point Green’s function to obtain a line
Green’s function. Only bothering to look at the tangent line is the same approximation as is
made when evaluating integrals by the method of stationary phase.

The process is shown geometrically in figure 6. The light solid curve represents the group
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point source

FIG. 6: A diagram showing the geometrical relationship between the group velocity curve (solid)

and the phase velocity curve (dotted). In this example the group velocity curve is an ellipse.

velocity, and the light dotted curve the phase velocity. For each of three points on the group ve-
locity curve, a dark tangent line has been drawn. A second dark line has been drawn from the
point source to each tangent line so as to meet it at a right angle. The direction of the second
line gives the direction of propagation of the plane wave represented by the tangent. Since the
point of intersection of the two lines is also the point on the tangent line that is closest to the
point source, the length of the second line is proportional to the phase velocity of the plane

wave. Thus the locus of such intersections sweeps out the phase velocity curve.

Why should we care about the phase velocity?

The aim of this paper is to characterize the behavior of the impulse response of an axisym-
metric anisotropic medium given only the 5 elastic constants. It is easy to solve the wave
equation in terms of plane wave solutions; that is what Fourier transforming is all about. In-
stead of a complex differential equation we have a simple algebraic one. The drawback is that
we do not get impulse responses for our solutions but instead plane wave velocities, which is to
say a phase velocity curve.

Phase velocity curves are not much used in geophysics, but a closely related quantity is —
the dispersion relation. A dispersion relation is simply the Fourier transform of a scalar wave
equation. It has the form of an algebraic formula relating w, k,, and k,. For a vector wave equa-

tion, there will be a different dispersion relation for each distinct mode of wave propagation.
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Dispersion relations are useful because such a formula can be solved for k., and used to

downward and upward continue wavefields.

. . .. k. k. .
When graphed, the dispersion relation is a plot of — versus - for w fixed. The spatial fre-

quency k of a wave is \/ETIC;‘; , and the tangent of the direction of propagation is %, so in
polar coordinates the dispersion relation is a graph of 5 as a function of direction. From basic
Fourier transform theory, V,, = %. Let us call the inverse of velocity slowness, and let us repre-
sent it by an upside-down V: 4, = -f—, Thus a graph of a dispersion relation is also a graph of
phase slowness for a particular temporal frequency. If a wave equation is dispersive, then the
phase velocity is a function of frequency. The wave equations we examine in this paper are not
dispersive, and so our graphs do not depend on frequency.

The most important property of the phase velocity, though, is that it is single valued. The
essence of a linear wave equation is that it support solutions in the form of travelling sine waves.
The velocity of such a wave may depend upon its direction of motion and spatial frequency.

However, given a direction and a frequency, there should be only one velocity (possibly

complex). A sine wave cannot travel with more than one velocity and stay the same.

Now for the math...

It is a simple exercise in trigonometry to find a mathematical formula for V,, and ¢, in

terms of V, and ¢, using the construction shown in figure 6. The result is:

Vv, dv,/dé,
= and ¢y = ¢ — Arct;an(——éi

) (23)

r

Equation 23 is not very useful. We usually need to go in the other direction, from the dis-
persion relation to the phase velocity to the group velocity. It is not obvious how to invert
equation 23, though. It is most easily done by returning to the physical analogy used to derive
equation 23.

The phase velocity curve gives the velocities of plane waves as a function of their direction
of travel. Let us examine a pair of plane waves travelling in very nearly the same direction. The
plane waves, being infinite non-parallel lines, must cross somewhere. The point where the waves
cross is the point of highest amplitude. If more waves are used, instead of a point there will be a
region in which the waves add constructively. Outside of this region the waves will add in a
more or less random manner and mostly cancel. Summing a group of plane waves travelling in a
narrow range of directions thus results in a moving blob of energy. The velocity of this blob is
the group velocity.

We can now return to figure 6 and examine it in the terms of the preceding paragraph. In

the figure we are summing three plane waves, using the phase velocity curve to position each
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one at the correct distance from the source. The curve along which they are summing construc-
tively must be tangent to each plane wave and also pass through the region where they
intersect. The group velocity curve shown satisfies these requirements. In the limit as infinitely
close plane waves are used, each point on the phase velocity curve can be identified with a
unique point on the group velocity curve. As before, the position of this point gives V, and ¢,.
It is an elementary exercise in calculus and trigonometry to find V, and ¢, in terms of Vo

and ¢,, using this construction. The result is:

V, = J Vol + (# 2 and ¢, = ¢y + Arctan(—VL‘ﬁ—). (24)

This equation is useful, because in this paper V,, is a predetermined single-valued function of
#w. The aim of the paper is to discover the properties of V,. Since V, is not a single-valued
function of ¢,, it is most convenient to leave it in terms of ¢,,.

We now have all the mathematics required to go from the dispersion relation to the impulse
response. There are a few more properties of the phase and group velocities worth pointing out

here, however.

Interesting symmetries

Earlier we introduced the concept of slowness. What do equations 23 and 24 look like in

terms of slownesses? Equation 23 becomes:

and equation 24 becomes:

AZ
4, = e and ¢, = ¢, — Arctan(
dAy
A2 1+ (2% e
w + (d¢w)

dAwA/w do,, ) (26)

The symmetry between equations 23 and 26 and 24 and 25 is rather obvious. Our geometri-
cal construction with which we connected the group and phase velocity curves also connects the
phase and group slowness curves! From this construction, we can see that the phase velocity di-
rection is perpendicular to the group velocity curve. By symmetry, the group slowness direction
must also then be perpendicular to the phase slowness curve. An important consequence of this
is that the group slowness (and also the group velocity) is a single-valued function of ¢, if and
only if the phase slowness curve is convex.

Some of these relations are also derived in a different way in section 4.2 of Jon Claerbout’s

book Imaging the Earth’s Interior. This book was also released as SEP—40.
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Magic properties of ellipses

In an isotropic medium, the group and phase velocity curves are both circles. Since one over
a constant is still a constant, the group and phase slowness curves are also circular. If we stretch
a coordinate axis, our isotropic medium becomes elliptically anisotropic, and our circular group
velocity curve becomes an ellipse. The similarity theorem of Fourier transforms tells us that if
we stretch the z axis, say, then in the Fourier domain we have squeezed the k, axis. This shows
that our formerly circular dispersion relation in this case also becomes an ellipse. Thus, an ellip-
tical group velocity goes with an elliptical phase slowness and vice-versa. While this property is
easy to prove in this way, there seems to be no obvious proof using the geometric sort of meth-
ods that served so well earlier in this appendix (hence the term “magic”). An “inverse” ellipse is

rather strange looking, as one can see by looking at the phase velocity curve in figure 6.

Triplications

Under what conditions can V, become a multi-valued function of ¢,? As ¢,, increases, ¢,
generally also increases. As ¢, goes around the circle once, so does ¢,, and in fact they can
never get more than 90° apart. If this general trend is always the case, then V, is a
single-valued function of ¢, as well as ¢,,, and the impulse response is well behaved. Trouble oc-
curs when ¢, instead of continuing forward stops and goes backwards for a while. When this
happens, the same value of ¢, is assumed for three different values of ¢,,. For this reason, such
an event is termed a triplication.

A triplication thus occurs whenever

dg,
d$.

<0. (27)

dér . . . . o . .
The formula for di is a bit too messy to give here since it is easy to derive. Here we are only

concerned with finding an inequality equivalent to that in equation 27. Multiplying through by
a factor that is guaranteed to be always positive followed by a bit of algebra reduces the above
inequality to:
d*v,
dé?,

Although equation 28 seems innocent enough, the algebra it entails can be so horrendous

< —V,. (28)

that I do not recommend that anyone attempt to tackle this problem without a good symbolic

algebra program at their side.3

8For this purpose we used MACSYMA, a large symbolic manipulation program developed at the MIT Laboratory
for Computer Science, and currently available through Symbolics, Inc.
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