409

What is the Median of {1,2,3,5} 7

Joe Dellinger

INTRODUCTION

Medians are used in data processing because of their insensitivity to the occasional
data value which differs wildly from the mean. The usual definition is that X is the median
of a set of numbers {z;} if the number of i for which X > z; is equal to the number of i
for which X < ;. This definition works well in practice, but mathematically leaves much
to be desired. For one thing, it cannot guarantee that the median is unique. In fact, if the
number of z; is even, this will almost certainly not be the case. Another problem is that
it does not easily generalize to the multi-dimensional case.

Francis Muir’s definition of median does not have either of these problems. It guaran-
tees a unigue median and is easily generalized to higher dimensions. The unique median
given by this definition is also a median according to the more often nused definition given
above. A sample program will also be given showing how Francis’ definition may be used

computationally.
FRANCIS MUIR’S DEFINITION AND ITS PROPERTIES

The Definition
Let
Ly({z;}) = NZI*’ py1/7,

SEP-41

410 Dellinger

where N is the number of elements in the set {z;}. This is the L, norm of {z;}.

T]ZIEIlt

X is said to be the median of {;} if it minimizes L,{{X — 2;}) in the limit as p — 1+.

This definition is a bit tricky. For one thing, notice that the minimization precedes
the taking of the limit. The order cannot be reversed, or the median will not be unique.
Also, notice that p must approach 1 from the plus side. The two-sided limit may not even
exist.

Given this definition, it can now be shown that the median defined by it exists and is
unique for all sets {z;} and that this median is also one of the possible medians given by

the definition of the introduction, if the median given by that definition exists.

Uniqueness

If L,({X —=;}) has a continuous first derivative as a function of X, then the minimum

must be assumed at a point where dLXLp({X — z;}) = 0. Now, this derivative is

1 1
]_V_ Z|X— ;|") 1 Z]X - z; I(p sgn(- z;)).

The only element of the formula that is discontinuous is the sgn function, but the effect of
this discontinuity is voided because it is always multiplied by the term |X — xi]p_l, which
at the discontinuity has the value zero. (Remember that p > 1.) Thus the derivative is
continuous.

All extrema can be found by setting this derivative to 0. The term (N):’ is a constant.
The term (. |X — xilp) 1 i always positive unless all of the x; are equal. So if the
derivative is to be 0 it must be becanse

ZlX — 2" 'sgn(X — @) = 0. (1)

There is at least one zero, since for X < min({z;}) the left hand side of equation (1)
must be negative, and for X > max({#;}) it must be positive. Since it is continuous, there
must be some X for which equation (1) is satisfied. Furthermore, since each term of the
summation is monotonically increasing, their sum is also monotonically increasing and so
this solution is unique. Since the derivative is going from negative to positive, this solution

must correspond to the unique global minimum that we want. Thus, the minimum exists

SEP-41

What is the Median of {1,2,3,5} ¢ 411

and is unique for every p greater than 1. It still is left to be proven that the limit as

p — 1T indeed exists.

Existence

To prove that the median does indeed exist, it is worthwhile to look at two cases sep-
arately. In the first case, the sgn functions are the determining factor. Consider equation
(1) as a function of p and X. Instead of forcing it to equal 0 we will put a Y for the right
hand side of the equation. The limit of this equation as p — 11 is

ngn(X —z)=Y.
£

If Y switches from being negative to positive at one well-defined point, then the corre-
sponding value of X must be in fact the limiting value of X satisfying equation (1) as
p — 17, This is the case because as p tends nearer and nearer to 1 the | X — xilp_l terms
can be made arbitrarily close to unity over the entire range of possible solutions. There-
fore it is the discrete jumps from —1 to 1 of the sgn functions that ultimately dominate in
controlling the limiting value of X.

In the second case there must be an interval in which
Z sgn(X —2;) =0 (2)
i

is satisfied throughout. Within this interval the determining factor is not, then, the sgn
functions, but instead the | X — milp*l terms. If there is a limiting X it must be within
this interval.

As an important aside, note that the first definition of median given can be restated
as “for all X such that equation (2) is satisfied, X is a median of the set {x;}".

Thus, if there is a limiting X satisfying Francis Muir’s definition of the median, such
an X must also be a median in the usual sense.

The best way to show that the limit in the second case does indeed exist is to find
an expression for it. Let z; be the largest element in the set {z;}. Then changing =; will
not change the interval that X is constrained to lie in. For a given p, X and z; are then
related through equation (1). As it will turn out, neither X nor z; will be a discontinuous
function of the other either for a given p near 1 or in the limit. This is important because
then we can consider X to be a function of z;, find the limit as p — 11, and then set =z,

to have its known value and so get an equation for the value of X in the limit.

SEP-41

412 Dellinger

Equation (1) is thus rewritten as:

1

7= Im [> (X-z)- Y (si-X) " +X (3)

zi<X i >X,i#1

Note that the sum inside the square brackets is 1 in the limit. Thus, taking the limit now
involves only an easy 1°° sort of limit. This is solved by the standard trick of taking logs

and using 'Hopital’s rule. This done, equation (3) becomes

H (X—:Bz')

z; <X

Il (@-X)

z;>X,i#1

T = +X (4)

Since X is seen not to be a discontinuous function of z; nor vice-versa given the range x,

was chosen to be in, our trick was valid and we have found an equation giving the limiting

value of X. Stripping z; of its special status, equation (4) can be written symmetrically
as

IT x-2)=]] (= - . ()

2, <X z;>X
This is the equation giving Francis Muir’s unique median in the interesting case that
the median is not one of the ;. Note that this equation may have more than one solution

but has exactly one in the interval of interest.

An Example: The median of {1,2,3,5}

The solution proceeds in a straightforward fashion: .

(X-1)(X-2)=(83-X)(5-X)

io
X?-8X+2=15-8X + X?
to
5X =13
to 2
X:zg.

This is the median of {1,2,3,5}.

SEP-41

What is the Median of {1,2,3,5} ? 413

A C PROGRAM FOR FINDING THE UNIQUE MEDIAN

It is easy to write a subroutine to return the unique median. It has to check which
of the two cases is appropriate, and if the median is not equal to one of the elements in
the set it must then find an approximate solution to equation {5). This is easy because
it is guaranteed that there is only one solution in the search interval, and that within
this interval both sides of equation (5) are monotonic. The program which follows does a
straightforward binary search. At each step of the iteration the search interval is halved
and the program determines which half to continue searching in. When the interval is
small enough that the requested level of precision has been reached, the value found is
returned.

The routine median calls the subroutine quant which was printed in SEP—10 on page
100. For convenience the routine is reprinted here, in slightly different form, and with
some documentation to explain its algorithm, which the original was lacking.

Both these routines are given in an Appendix.

REFERENCES

Muir, F. 1984. personal communication

Canales, L. 1976. A quantile finding program, SEP-10, p.99-100

SEP-41

414 Dellinger

APPENDIX

median.c
/t
* Median.c
This subroutine finds the unigque median of a set of numbers.

The subroutine quant partially orders the array z to find the
interval to search for the median in.

* * »

*/
#include <math.h>
float median (x, n, error)
int n; 7* Size of z array */
float *X; /* Array of floats to take the median of */
float error; /* Tolerance regquired. Must be positive. */
{
int k;
float lower, ~upper;/* Limits of inierval being searched */
fioat X; 7* Trial median value */

float left, right;/* Logs of left and right hand side of equation 5 */

if (n == (2 * (int) (n 7/ 2)))

§

/* n even */
k =n / 2 /* Find the interval to search in */
quant (k, x, n);
quant (k — 1, x, n);

upper = x[kl;
lower = x[k — 1];
if (upper == lower)/* easy case */

return upper;
/* Hard case. Do a binary search */
while (upper — lower > error)/* Stop when you are within tolerance */

X = (upper + lower) / 2.;/* See which half contains the solution */
/* Use logs for better numerical stability. */

left = 0, /* Initiglize before summing */

right = 0;

for (k = 0; Xk < n / 2 k++)

{

]
for (k = n / 2, k < n; k++)

!

left += (float) log ((double) (X — x[k]));/* Left side *~/

right += (float) log ((double) (x[k] — X));/* Right side */

if (left > right)
upper = X; /* Keep lower half */
else
if (left < right)
lower = X;/* Keep wpper half */
else
return X;/* We got it exactly accidentally */

7* sufficient accuracy attained, stop */
return (upper + lower) / 2.;

else

{

/* noodd */

/* Easy case. Find tF: element that is the median */
k =n /2
quant (k, x, n);
return x[k];

SEP-41

quant.c

VAl
L]
L]

.

What is the Median of {1,2,3,5} ¢ 415

Quant.c
This is a translation into C of a fortran program in SEP 10 p100.

A4

N
-

® 9 00009080

a is the input data.

To find the k’th element in the completely ordered data set,

without completely ordering it, call quant with

n the total number of elements, and k the one you are

tnterested in. Upon return, a[k] will be what you want.

if you want several k, call again and again with k lower each

time. a is reordered when quant returns, be warned.

Note that k is thought of as in the C convention...
O0<K=k<=n -1

-
AN

N
LR B BT AR IR I I R I R S S A S

The basic idea is this: Pick an element. Subdivide the data into

two sets: those less than the chosen element, those more than the
chosen element. See which subset the element you want must be in.
repeat using that subset.

The subdivision into two subsets is done by starting in from each end
looking for an aelement that is "out of place". When one is found, the
search continues on the other end. When you have one at each end, swap
them. Now those are both in their correct subset. Continue unitil your
two searches run into each other in the middle somewhere.

This algorithm is somewhat dumb about values equal to your chosen value:
it always thinks they are in the wrong subset.

It is also more efficient to do a search Jor the mazimum or minimum of
the subset under consideration when you know that the element you want
is one of those two rather than to continue by the "divide and conguer”
method. But this program doesn’t do that.

\4

quant (k, a, n)
int k, n;
fioat *a;

{

int low, hi, i, j;
double ak, aa;
low = ¢

hi = n - 1;
while (low < hi)

k = a[k];
low;
i;

°

i

&

while (a[i] < ak)
i i++;
%rln'le (afj] > ak)

==

]

if (i <=j)

E aa = afi};
ali] = afjl;
ali] = aa;
i++;
=

}

’while (i <= j);
?f G < k)

low = j;
%f(k < i)

hi = j;

SEP-41

416

