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The method of controlled directional reception
Chuck Sword

INTRODUCTION

Controlled directional reception has been developed over a period of many years in
the Soviet Union as a means of processing seismic data. It is based on the work of an
American, Rieber (1936), but has been extensively developed in the Soviet Union under
the leadership of Dr. L.A. Riabinkin of the Gubkin Institute of Petrochemical and Cas
Production in Moscow (Riabinkin, et al., 1962). It was recently described, more or less
incorrectly, by Sword (1981), and a specialized version has been described in an article

by B.R. Zavalishin that was translated (with some errors) by Sword (Zavalishin, 1982).

During my recent nine-month stay at the Gubkin Institute [ had the opportunity to
study this method in more detail (I was interested in applying CDR, as it is known, to
the processing of converted-wave data), and I will attempt in this article to describe one

variant of it.

Several variants of CDR have been developed over the years; the one that I will
describe has been designed to work with the densely-sampled multifold data that has
become common in recent decades. It is, in many ways, a form of migration before
stack, and because this migration can be accomplished extremely quickly, there is some
promise that it would be of use in interactively interpreting and migrating data from

geologically complex areas.

I will explain in this paper how the CDR method can be used to produce a seismic
section when velocity is already known, and how CDR can be used to determine the
velocity when it is not known. I will discuss some problems that arise when velocity
cannot be assumed to be constant, and will present the results of using the CDR method

to process some synthetic data.
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NOTATION

[t is useful to begin by establishing a consistent system of notation. Figure 1 shows

a typical recording geometry.
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FIG. 1. Typical recording geometry. The figure is drawn so that all parameters shown
on it are positive.

The notation used is:

Z, — Shot position

z, — Geophone position

h - Half offset: (z, - z,)/2

y - Midpoint: (z, + z,)/2

Zq, 29 — Reflector position

Zp — Horizontal distance from midpoint y to the reflector.
t — Travel time

v — Average velocity

Ds — Ray parameter of the downgoing ray (p, — -dt /dz,)
Py — Ray parameter of the upcoming ray (p, = —dt /dz,)
0, — Angle (from vertical) of the downgoing ray

9, ~ Angle (from vertical) of the upcoming ray

¢ - Angle (from horizontal) of the reflector

In Figure 1 the raypaths have been drawn as straight lines, even though v is defined as
an average velocity, implying that velocity is not necessarily constant. The problem of
varying velocities will be discussed later; for now velocity is assumed to be constant, but

the term 7 will be used to ensure consistency with later results.
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Controlled directional reception 371

DETERMINING THE RAY PARAMETERS

Determining z,, z,, and ¢ for a particular event on a particular trace is not
difficult, because we can easily determine these values by looking at the trace header and
by picking the travel time of that event. Determining p, and p,, its ray parameters,

can be more difficult, however.
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FIG. 2. Determining ray parameters. Figure 2a shows how a short-base common-shot
gather might be collected in the field, while Figure 2b shows the possible results of this
seismic experiment. Figure 2¢ shows the results of slant-stacking this data: from the
slant-stack section we can determine Py

Typically, one determines p, and p, by performing slant stacks over small bases.
For instance, Figure 2 shows how p, might be determined. Several traces having shot-
points at z, and receivers near z, are gathered, and a slant stack is performed on these
traces. The value of p that corresponds to the highest amplitude on the slant stack at a
particular time ¢ is picked, and this p is considered to be p, . Similarly, several traces
having shotpoints near z, and receivers at z, can be gathered and slant stacked, and a
value of p picked at time ¢; this p corresponds to ps- The two “‘summation bases”, as
the locations of these traces are known, are shown in Figure 3 in the form of a stacking

chart.
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A more traditional way of picking p, and p, (in the Soviet Union, anyway) is
shown, again in the form of a stacking chart, in Figure 4. In this method we use the
principle of reciprocity: we determine z, by placing a shot at z, and slant-stacking the
gather of traces from geophones near the point z,. An advantage of this second method
is that we are not thrown off by differences in the spacings between geophones and shots;
a disadvantage is that a split-spread recording scheme must be used to gather the
reciprocal data. Another disadvantage of this method is that it does not work well when
we are interested in looking at converted waves; we should not blindly invoke reciprocity
when the shot function and geophone response are not identical (e.g., when we have an

explosive source and horizontal geophones).

There is an art to picking p, , Py, and ¢ from slant-stacked gathers. Researchers in
the Soviet Union have studied this problem for many years, and have successfully taught
computers how to do the picking. I did not study that particular problem while I was in
Moscow, so I won’t try to discuss it here. (The synthetic data that I will present later in
this paper had its values of ¢, p,, and p, picked by a computer at the Gubkin Institute
in Moscow.) The rest of this paper is devoted to the problem of analyzing the data after

the picking operation has been performed.

MIGRATION IF v IS ALREADY KNOWN

I will assume for the present discussion that 7 is known, and that it is constant.
When this holds true, the travel-time equation for a point diffractor located at an arbi-

trary position (z, zg) is:

Pt =\log —h )+ 28 +(ar +hPF2q . (1)

(Recall from the above section on notation that zp is the horizontal distance from the
midpoint (y ) of the observation system to the diffracting point, so Tp = 24— y.) When

equation (1) is solved for zg, we get

202:[1_ 4”2)[5_2{2_—@;2]. 2)

7}-2t2 4

If we assume that h is known (it should be; & is simply half the distance between the
shot and geophone), that ¥ is known (this is the main assumption of this section), and
that ¢ has been picked and thus is also known, then we see that if we graph zg as a

function of zp, we obtain an ellipse (this figure is known, I believe, as an aplanat).

The significance of equation (2) is that it gives us some idea of the location of the

reflecting point: the point must be located somewhere along the ellipse, if we have
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picked the correct value for ¢ and used it in equation (2). The problem now is to nar-
row down this location still further. A reasonable way to do this is to assume that our
reflection didn’t actually come from a reflecting point, but from a small tilted “dip bar”’,
as was illustrated in Figure 1. Because the ellipse described in equation (2) would be
tangent to the dip bar at the point of reflection, it follows that if we can determine the
angle of dip of the dip bar, we can determine the location of the dip bar along the
ellipse. Once we know the actual location of the dip bar, we can plot this little bar as a
short line on a time section or a depth section; and by plotting all of the picked (ps, Py,

t ) data in the form of such bars, we can build up a picture of the subsurface reflectors.

It is necessary, then, to find the dip angle ¢ of the particular dip bar whose location
we are attempting to find. We can make use of the fact that sinf, — 7p, and
sind, = vp,, with 6, and 0, being the angles of the downgoing and upcoming rays. We
also recall that the angle of incidence onto the dip bar equals the angle of reflection from

it, and with a little algebra we find that

U(ps +pg)
tang — . (3)
V1= +/1-7p

Now that the dip angle ¢ has been determined, we need to determine at what point

along the ellipse in equation (2) the dipping reflector is located. Equation (2) can be
differentiated with respect to zp, and we can make the substitution dzo/dzp = —tang
(the minus sign results from the fact that in our system of coordinates, z, increases

with depth). Solving for zp, we find

Tp = = . (4)
1- + tan?¢
\/ RE

Because we know z, as a function of 25 from equation (2), we can make an appropriate

substitution into equation (4) to obtain

N P s
2 52t2
29 — . (5)

4h? g
1- + tan®¢
\/ 722

So now we have the equations that we wanted. Once p, and p, have been picked,

we can use equation (3) to determine ¢. And once ¢ is known and ¢ has been picked,

we can use equations (4) and (5) to determine zz and z, Once Tp 1s known, it is trivial
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to find 2 (recall that 29 = zg + y).

This process, then, is a form of migration before stack. Using our values of Tg, 2o,
and @, we can produce a depth section, or we can produce a time section by converting

from depth to time according to the formula

220
v

FINDING v

Let us continue to assume that ¥ is constant but unknown. All we know are the
parameters that we picked (¢, p,, and p,) and the half-offset A. It can be shown that

when 7 is constant over the section,

h
1-=p - p,)
7= - : (7)
(ps = Py )E + ps Py

I was able to obtain this result only after some rather messy algebra; I know of no easy

way to derive it, but that doesn’t mean that an easy way doesn’t exist.

Equation (7) is accurate as long as ¥ is constant, but in practice our determinations
of p, and p, are sometimes inaccurate, and thus I introduce a new parameter, vgpp :

this parameter is defined to be the value of ¥ that is found by use of equation (7). That

Is,
h
\ 1= =(ps —p,)
Vépp = ; . ' (8)
(ps — Py )_47 + Ps Py

It is important to keep in mind the distinction between vopp and 7. The meas-
ured velocity, vepp , can vary greatly because of small inaccuracies in ps or p,, and thus
it can vary sharply for different picks. In contrast, ¥ is a smoothed (and possibly con-
stant) velocity function. Thus, it would be a mistake to use VepR , once it has been
determined, in place of ¥ in equations (3), (4), and (5). If vopr were used, dip bars from
the same reflector would most likely be mapped semi-randomly into various places in the
final section instead of onto one smooth reflector, because each dip bar would be mapped

according to its own velocity, the poorly-determined value vgpp .

There are uses for vepp , however. The first is in the determination of 7. By look-

ing at the values of vopp from a number of different picks, one can develop a smoothed
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velocity function, ¥. The velocity vepp can also be used as a measure of reliability of
the pick. If vgpp for a given dip bar differs greatly from that of its neighbors, it is rea-
sonable to assume that that particular dip bar represents noise rather than a well-

behaved signal, and the computer can accordingly decide if it should be plotted.

PROBLEMS OF NON-CONSTANT-VELOCITY DATA

CDR would not be very useful if it worked only when the velocity was constant.
However, my derivations up to this point have been based on that assumption. Let us
examine how to extend these derivations to the relatively simple case of v — v (2). One

difficulty is that my ‘“‘average velocity”, 7, has not been used in a consistent way. Dur-
ing some parts of the derivation I have treated it as Upms, Which produces
approximately-correct travel-time curves as a function of offset, and which is defined by

the equation:
to

— 1 2
Urrzns(to) = T vlayer(t )dt ’ (9)
0
0
where vy, () is the true layer velocity as a function of vertical travel time. During
other parts, I have treated ¥ more as Uayy » Which produces correct time-to-depth map-

ping for the case of horizontal reflectors and normal rays, and which is defined as:
to

Vorg (40) = 7= [ e (1)1 (10)
0

Thus, the exact meaning of ¥ is not too clear. For a special case, though, the case

in which reflectors are horizontal (¢ = 0 and p, = -p, ), it can be shown that ¥ found
In equation (7) is equivalent to the v,,,, defined in equation (9). When we combine equa-
tions (5) and (6) to find ¢, the T that appears in the combined equation is also
equivalent to the v,,, defined in equation (9). Thus in some cases, T can be considered
an analog of the traditional v,,,. This does not always hold true, though; if we use
equation (5) by itself to find z,, we will not get a correct answer, because v,,, Is not
accurate in doing time-to-depth conversions. And it is not clear what meaning U has

when the reflector is not completely horizontal.

The fact is that equations (3), (4), (5), and (8) work in practice, as the examples in
a later section will show. One possible explanation for this success is that as long as the
velocity gradients are not too great, the various “average” velocities, such as v,,,, and

Vayg , are not much different from one another, and then it is possible to speak of T as
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being a generalized average velocity. And, as we have seen, in some cases T acts con-
sistently like v,,,. It appears that the reasoning behind my derivations might not be

too inaccurate even when ¥ is not constant, as long as it is not too variable.

Besides causing problems in the theory, variable velocities also cause some compli-
cations in processing. Many of these difficulties, such as analyzing velocities when the
positions of the reflectors are not yet well-defined ( we don’t know exactly where the
reflectors are until we know the velocity structure), are solved by use of an iterative
algorithm. For instance, when migration is first performed on the data, an educated
guess about the velocity function is used. From this migrated section it is possible to get
a fairly good idea of how vgpp , and thus ¥, vary spatially. Then this new velocity func-

tion, ¥, can be used to process the data.

Once an approximate velocity function has been found, equations (3), (4), (5), and
(6) can be used. Because ¢y is not found until equation (6), and because T has been
found as a function of ¢y, an iteration to find the correct ¢y, must then be performed.
That is, equations (5) and (6) show how ¢, depends on ¥ (and on other variables, some
of which, such as ¢, are also dependent on ¥), but ¥ in turn has been determined as a
function of ¢, (and possibly y, depending on the exact velocity analysis algorithm that is

being used). Thus an iterative process must be used to find ¢,

Once a reasonably good image has been obtained through the use of this approxi-
mate velocity function, one could presumably return to the velocity-analysis stage and
fine-tune the velocity estimates, sharpening the image some more. I have not found it

necessary to take the process this far, however, at least with the synthetic data that I

have processed.

It should be noted that the velocity vopp associated with a particular dip bar need
be determined only once. The difficulty in velocity analysis is determining where that
dip bar should be located. We want velocity as a function of ¢, (and possibly y); until
we apply equations (3), (4), and (5), we do not know the ¢ty and y values that should be

assigned to the dip bar and its associated vepp .

The CDR method, then, has some difficulties when velocity is not constant, because
the theory (as I have developed it) is derived with the assumption of a constant-velocity
medium. In practice, however, CDR seems to work well even when velocity variations
are fairly sharp. Certainly the assumptions made in CDR processing are no more
unjustified than the assumptions that go into the conventional “NMO plus stack plus

migration” process.
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FINE POINTS OF THE METHOD

Although I have stated the basic equations necessary for CDR migration, there are
some fine points I have not yet covered. Most of these are of interest only if you are
planning to write your own CDR program, and thus you may wish to skip the following
five or six pages. But one fine point is necessary for an understanding of the plots that I

shall soon be showing: the question of how amplitudes are dealt with.

Amplitudes and velocity filtering

When the parameters p,, p,, and ¢ are picked, the amplitude, a, is also picked.
This amplitude can then be used to determine how intensely the dip bar should be plot-
ted. But recall that I noted in the section on finding ¥ that vopg could be used to
determine the likelihood that the dip bar represents an actual reflection. If the value of
vepr is close to the expected value 7, then the data is probably reliable. If these values
are not very close, then that particular dip bar might represent noise rather than signal.
The reliability of the data can be quantified as shown below, and if the data proves to

be unreliable, @ can be reduced appropriately.

Let o represent the reliability, as defined in the following formula:

v -v
a= T (11)
v

Then we can let ¢, be defined as the “sharpness” constant, and change amplitude

according to the formula

a2
Gplpt = G € o ’ (12)

where a is the picked amplitude and apip¢ 18 the amplitude to be used in plotting.
Clearly, the greater the value of ¢,, the more sharply the amplitude is suppressed when
vepr does not correspond with 7. In effect, this is a form of velocity filtering. A typical

value (the one that I used in plotting) is ¢, = 10.

Size and shape of dip bars

There are other fine points to the CDR method, including deciding how long to

make the dip bars and how to treat variable velocities.

Determining the dip-bar length is fairly straightforward. In a paper that was
translated by Sword (Zavalishin, 1981), Zavalishin showed that an appropriate length d

would be

d = /2zo\eosd (13)
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where X\ is the wavelength of the source waveform. (This formula actually gives the size
of the reflecting area on a reflector illuminated by a single ray.) In making my plots I did
not compute X; instead I varied its value by trial and error until I obtained a plot in
which the dip bars weren’t so long that they degraded resolution, and weren’t so short
that the section looked choppy. This value turned out to be 9 meters, which (for a velo-
city of 3000 meters per second) would correspond to a source waveform that was .003
seconds long. Such a short waveform is not physically likely, but it should be kept in
mind that this value was for a model produced by ray-trace methods, which operate in

the high-frequency (short waveform) limit.

Once the dip-bar length has been determined, an amplitude taper can be applied to
each dip-bar when it is plotted. For my plots I used a simple triangle taper: the ampli-
tude was zero at Both ends of the dip bar and increased linearly to a maximum value at
the center. It is also useful to convolve a signal onto the dip bar rather than to plot the
bar as a dipping line of delta functions. This may easily be done by running the plot

data through a bandpass filter before making the plot.

Velocity analysis

The issue of how to treat variable velocities, and more specifically, how to make use
of the results of velocity analysis, is more complicated. In fact, you might want to skip
this section on the first reading. If you want to write a program that carries out CDR,

you might need to know this, but otherwise, it is not vital to your understanding.

Anyway, here goes. Consider how velocity analysis works in conventional (NMO +
stack) processing. A common-midpoint gather is formed, and various velocity functions
are applied until a best fit is found (the best velocity function is the one that maximizes
the semblance). This best velocity function is used to apply normal moveout (NMO) to
the common-midpoint gather, and the moved-out gather is stacked to form a single

trace.

In CDR, several different approaches are possible; here is one that works on my
synthetic data set (this approach was briefly sketched in a previous section, but I
describe it now in excruciating detail). This approach, by the way, is somewhat different
than the one used in the Soviet Union, because I never learned in exactly which coordi-
nates they displayed their velocity analyses, and how exactly they used these analyses in
the migration process. This section, then, does not necessarily represent the CDR
method as practiced in the USSR.
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To begin, an arbitrary velocity function is chosen (it is most convenient if it is
chosen to be constant). The picked parameters (p,, py, and t) and the arbitrary velo-
city function are used to form the equivalent of an unmigrated but moved-out stacked
section in the following fashion. Once equations (3), (4), (5), and (6) have been
evaluated, giving the coordinates (zy and ¢g) of the dip bar on a a migrated section, a
diffraction process can be applied to undo the effects of the migration without undoing

the effects of moveout. The equations that apply this process are:

t fo 14
and
Ty = T~ Zgtang (15)

where z,,, and f,, represent the apparent reflector position after NMO and DMO but
before migration. Figure 5 shows graphically what we have done. This might seem like
a strange way of going about things, migrating and then applying a zero-offset
diffraction, but its advantage is it preserves both the NMO and the dip moveout (DMO)
portions of the migration process (see Hale (1983) for an explanation of DMO).

Shot Midpoint Geophone

I z

Y
(Tmo |

8

FIG. 5. Applying diffraction to a migrated dip bar. This figure shows how a simulated
zero-offset reflection can be used to determine the apparent position of a dip bar after
moveout but before migration. Once the values z, t,, and ¢ have been found for a par-
ticular dip bar, it is not hard to determine what its apparent position (Tmo and t,,)
would be before migration. Note that z,,, is generally close to Y.
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Now we have associated each dip bar with a particular ¢,, and z,,, and each dip
bar also has associated with it a particular value vopg which is obtained by use of equa-
tion (8). It is then relatively straightforward to form a velocity-analysis display showing
vepr as a function of z,,, and ¢,,. Despite the seeming complexity of this process, it is
quite similar to what is done in conventional processing: moveout (both dip moveout and
normal moveout) is applied, and the best velocity for a given time tmo and midpoint

position z,,, is picked.

Here we encounter one more level of confusion. I just pointed out that we can form
a velocity-analysis display showing veopg as a function of z,,, and ¢,,. We note, how-
ever, that z,,, the unmigrated horizontal position, is probably close to y, the midpoint
of the data-collection system (that is, halfway between source and receiver). This may
not be obvious; Figure 5 will help make it clearer. It turns out that in later stages, it is
not very useful to know velocity as a function of z,,, while it is quite useful to know it
as a function of y. Thus, we should analyze vgpp as a function of y and ¢,,, and

smooth our results to form 7 (y,¢,,, ).

Using the results of velocity analysis

Once we have produced a smoothed velocity function T(Y ,tmo ), Wwe apply it in the
full migration process. One way of applying it, one that works, is to take our function
7(y,tm, ) and simply use it as ¥ (y,t,), recalling that ¢, is migrated travel time and y is
the midpoint of the data-collection system. Although ¢,, — to only for flat reflectors
(look again at Figure 5), this substitution (an incorrect one) produced better results than

did continuing to use t,,, (at least on the synthetic data that I processed).

Let us assume that we have somehow come up with a velocity function v(y,to). (I
don’t know how this function is obtained in the Soviet Union; perhaps they use a more
correct method than I have described above, or perhaps not. The rest of the techniques
to be described are, at any rate, ones that have been tested at the Gubkin Institute.)
Now we must perform some iterations. Taking our data picks (ps » py, and t) at a par-
ticular midpoint y, we work through equations (3), (5), and (6) to find the value of to
(Because we are not yet interested in the value of Zp, we do not yet need to evaluate
equation (4).) The value of ¥ used in the first iteration was obtained simply by finding
v(y,t). Because ¢ is actual travel time rather than migrated or moved-out travel time,
this value of ¥ is not particularly accurate. After the first iteration, we have a prelim-
inary value of £, that can be plugged into T(y,ty). Then, using this new value of v, we

repeat the same process to get a better value of t,. We can continue iterating until we
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converge on the correct value of t,. Now that we know ¢, and 7, we can evaluate equa-

tion (4) to find zp, and the migration process is complete.

It might seem most obvious, and most physically realistic, for us to store 7 as a
function of both to and zp, that is, as a function of both migrated travel time and
migrated horizontal position. Then our iteration process would try to converge on
values of both ty and zp. However, this process is more expensive (we have to evaluate
equation (4) at each step of the iteration) and less stable. I have tried various schemes,
and the one described above, for all its flaws (the main one being the assumption that

to = tm, ), gave the best results when tried on my synthetic data.

Correcting the dip angle

There is one more fine point which may be even more obscure than the ones I have
Just discussed. The problem can be seen by looking at the diagram in Figure 6: when
the velocity varies with depth, the tilt of the reflector will be calculated incorrectly,
because of the curvature of the rays. Tests that I performed on my synthetic data set
showed that the correction for this erroneous tilt was not especially helpful, and for some
cases made the image worse. Thus, I prefer not to use it; but because it is used in the

Soviet algorithm, I will describe it here.

It is convenient to assume that ¥ is a function of ¢, (vertical travel time) only.

Then we can describe the angle from vertical of a particular ray using the formula

sin(0(%0)) = vigyer (to)p , (16)

where p is constant, and 6 and Ulayer are functions of depth (here depth is expressed in
terms of vertical travel time, ty). Thus the angle of a particular ray at any depth Is
known, as long as Uiayer 1S known at that depth, and p, being constant, is known at all
depths (at the surface, for instance). Then equation (3), which gives the angle ¢ of the

dip of the reflector, can be rewritten as:

Vlayer (tO) (ps + Dy )
tanqS,,ue == ) (17)
\/1 vlayer ps + \/1 Ulayer (t

where ¢,.,, is the true dip angle of the reflector.

The question now is how to determine Yiayer 3t a particular t,. It is convenient to
assume that ¥ is equivalent to v,,,,. As pointed out in a previous section, this assump-
tion is correct for some, but certainly not all, cases. Looking back at equation (9),

replacing v,,,, with ¥, and differentiating both sides with respect to t,, we find that
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T — r—
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U =const v:v(z)

a b

FIG. 6. How velocity variation can change the apparent dip of a reflector. Assume, for
simplicity, a zero-offset case. Figure 6a shows an.apparent dip that was determined
using an average velocity value, while Figure 6b shows the true dip which, due to verti-
cal velocity variations, differs from the apparent dip. Note the curvature of the ray in
the latter case.

vla2yer(t0) = 5 (tOEQ(tO)) . (18)

And so we can determine v, if we already know the velocity function 7. Once we
have found v, , we can use equation (17) to find ¢,,,,. And once we know Birue , WE

can plot our section using the true dip angle.

As I noted previously, this correction actually seemed to degrade the quality of the
image at some places in the synthetic examples on which I tested the method. I am not
certain that this correction corresponds exactly to the correction used by the Soviets,

although they are both based upon the same principles.

Time-to-depth conversion

Migrated time sections are the ones most commonly created, by use of equation (5)
to find depth (z¢), and then the use of equation (6) to convert depth to vertical travel
time (fo). As noted in a previous section, this migrated time (to) is found in a way that
is consistent with the idea that ¥ corresponds to v, , at least for flat-lying reflectors. If
equation (5) is used by itself, a migrated depth section can be created, but if 7 does
correspond tO ¥y, , then the depths displayed will not be quite correct, because Vgug (seE

equation (10)), and not v,,, , should be used for time-depth conversions.
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«— W

=v(z)

FIG. 7. Problems when velocity varies laterally. This figure shows how a zero-offset
reflection from a flat reflector can result in a non-vertical ray at the surface when velo-
city varies laterally. This non-vertical ray can be mistakenly interpreted as coming from
a dipping reflector.

There is an additional problem when velocity varies horizontally as well as verti-
cally. This problem is illustrated in Figure 7, which shows how a normal ray from a flat
reflector can end up traveling at an angle by the time it reaches the surface, and thus
can appear to have come from a dipping reflector. Because of this problem, reflectors
beneath horizontal velocity gradients appear fuzzy on depth sections. That is, even
though the centers of the dip bars are positioned more or less correctly along the line of
the reflector, each dip bar has the wrong dip, and the different bars do not reinforce each

other. I have not yet tested methods of correcting this problem.

RESULTS PRODUCED WITH MODEL DATA

While I was in the Soviet Union, Boris Zavalishin of the Gubkin Institute developed
the model shown in Figure 8. Dr. G. Matveenko of VNII Geofizika (another institute in
Moscow) was kind enough to model this data using a program (based on ray tracing)
that he had developed. The source was assumed to produce S waves and P waves of
equal intensity, while the receivers were assumed to be vertical geophones. When the
data is processed by conventional methods (NMO and stack, without migration), the

result is as shown in Figure 9.

Figure 10 shows the result of stacking by CDR methods, but without migration, at

a constant velocity of 3000 m/sec. This result was then fed into a velocity analysis
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FIG. 8. Model used to generate the synthetic data shown in the following figures. P-
wave velocity (vp) is shown in m/sec; S-wave velocity (vg) is always vp /1.732. Each
reflector is labelled with a number. The source produces S- and P-waves of equal inten-
sity, while the receivers are vertical geophones. Distances between shots and between
geophones are each 100 m. No vertical exaggeration has been applied.

program, which produced Figure 11; this figure shows the velocity analysis at a particu-
lar midpoint. Notice how well the peaks are defined. Figure 12 shows the result of a

conventional (semblance) velocity analysis plotted in the same format.

With the results of the velocity analyses, Figure 13 was produced; it represents the

migrated stacked section. Notice how much cleaner it is than Figure 12.

I produced Figure 14 by use of S-wave instead of P-wave velocities in order to
obtain a shear-wave section. I computed the S-wave velocities by dividing the P-wave
velocities by 1.732 (this ratio is the one that had been used to produce the model in the
first place). Although much noise (here all unwanted reflections are considered to be
noise) remains, the S-wave reflections clearly stand out. Figure 15 shows the results of
using conventional processing to produce an unmigrated shear-wave section; the shear-

wave events are almost completely hidden by noise.

It is not surprising that the CDR sections contain less noise than the conventional
sections. Recall the sharpness constant (c,) that was discussed previously; I used a

value of ¢, = 10 in the display of all of the CDR figures shown above. This constant
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FIG. 11. The results of a CDR velocity analysis at the midpoint y = 3000 m. Note the
sharpness of the peaks. The heavy line represents the picked velocity.
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FIG. 12. The results of a conventional semblance velocity analysis at the same midpoint
and in the same format as Figure 11.
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represents a fairly strong velocity filter; many unwanted events were suppressed by this
filler because they were produced by waves that traveled at incorrect velocities. The

process of NMO plus stack also acts as a velocity filter, but a much weaker one.

CONCLUSIONS

CDR, used for many years on Soviet computers, works on US computers as well.
There are advantages to the CDR method; we have just seen how effective the easily-
implemented c¢, velocity filter is. There are disadvantages as well; the main one, from

an interpreter’s point of view, is probably the loss of waveform information.

An advantage is that CDR processing uses very little computer time compared to
almost any other migration method. The original picking of the data can be expensive,
since all the data has to be slant stacked over short bases, but this picking can be done
without any a priori assumptions about velocity, and all subsequent processing of the
picked data is extremely cheap For example, the plotting program that produced the
plots shown in this paper consumed more computer time than the migration program
did. This speed suggests that the CDR method might be well-suited for interactive
migration, where speed is more important than the exact reproduction of waveforms.
Once the interactive CDR program has been used to find velocity, a more-expensive pre-
stack migration process can be used to produce the final section. This procedure might
be useful in regions of complex geologic structure. (Gray and Golden (1983) describes an

iterative migration program based on principles similar to those of CDR.)

CDR produces very sharp velocity analyses, as Figure 11 shows. And recall that
these analyses are already compensated for DMO, which means that correct velocities
can be found even for events from dipping reflectors. Thus CDR may be a useful for

producing velocity analyses, even if it is not subsequently used for imaging the section.

CDR’s velocity-filtering characteristics may also prove useful; for this reason it

could be an effective tool for finding and processing converted-wave reflections.
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