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Approximating the kinematics of converted waves
Chuck Sword

INTRODUCTION

Converted-wave reflections are usually difficult to process, because they exhibit
non-regular travel-time curves (i.e., non-regular kinematics). For instance, on a
common-midpoint (CMP) gather the travel-time curve of a converted wave, unlike that
of a simple PP or SS wave, is non-symmetrical if the reflector is slanted. The processing
difficulties caused by this effect should be obvious. In this paper I will present a simple
transformation of the coordinates of converted-wave data. This transformation is par-
tially based on work by Nefedkina (1980), and by Puzyrev (1975), who are studying
similar problems in Novosibirsk. If the coordinates of the data are thus transformed,
they will appear to have (approximately) the kinematics of normal PP or SS data, and
can subsequently be processed using already-existing techniques (e.g., velocity analysis,
dip moveout (DMO) (Hale, 1983), NMO and stack, migration, even controlled directional
reception (CDR) (Sword, 1984)). The individual data traces are not altered by the
transformation; they are merely given new coordinates (that is, new midpoints and

offsets), based on an a priori knowledge of the ratio vp [vg.

I will show that as long as the ratio vp /vg is constant over the entire section, and
vp is a function of z (depth) only, the kinematics of the transformed data will approxi-
mate the kinematics of normal PP or SS data. I will also present graphs that indicate
the accuracy of the approximation under various conditions, and I will compare syn-
thetic converted-wave data processed with these techniques to the same data processed
with conventional techniques. In the Appendix I will show how I originally derived the
transformation; in the body of the paper I will only present the transformation and show

how it works.
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NOTATION

It is useful to begin by establishing a consistent system of notation. Figure 1 shows

a typical recording geometry.

Shot Midpoint ~ Geophone
T Y g
h h
-0 0
s ps g pg
20
Vs 1
s
N Y,
z
i (20, 20)
¢

FIG. 1. Typical recording geometry. The figure is drawn so that all parameters shown
on it are positive.

The notation used in this paper is:

Z, — Shot position

z, — Geophone position

h - Half-offset: (z, - z,)/2

y - Midpoint: (2, + z,)/2

Zg, 29 — Reflector position

Zp — Horizontal distance from the midpoint y to the reflector

t — Travel time

v, — Velocity from shot to reflector (velocity of the downgoing ray)
v, — Velocity from reflector to geophone (velocity of the upcoming ray)
~ - Ratio of velocities: v, /v,

P, — Ray parameter of the downgoing ray (p, = —dt /dz, )

P, ~ Ray parameter of the upcoming ray (p, = —dt /dz,)

This notation can be a bit misleading at first. For example, if we were interested in
PS waves, v, would be the P-wave velocity, while v, would be the S-wave velocity. In
other words, it is wrong to always assume that v, equals the S-wave velocity vg. It

should be noted that for PP or SS waves v = 1, while for PS waves v < 1, and for SP
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waves v > 1.

THE TRANSFORMATION

The transformation is very simple. If we have a trace that was recorded at mid-

point y and offset h, we simply give it new coordinates y’ and k', where

1-1
v'i=y-h- 7 (1)
1+ L
v
and
h'=h v = (2)
1 —
7(1+3)
We also define a new velocity v, where
2v
v = : . (3)
1
1+ =
~

This last definition is not a transformation of the data, but we will see (in the following
section) that this definition is useful when the transformed data is being processed and
interpreted. (The derivation of these three equations is given in the Appendix.) Equa-
tion (1), by the way, was originally developed and tested by researchers at the Institute
of Geology and Geophysics in Novosibirsk (see Nefedkina, 1980; Nefedkina, et al., 1980;
and Puzyrev, 1975); they made no transformation analogous to equation (2), and defined
their velocity transform as v = m. Their transforms make it possible to perform
NMO on, and to stack, converted-wave data in a reasonable way, but the velocity v
cannot be directly used for the subsequent migration, and it is not entirely clear how

more complex pre-stack operations, such as DMO, can be accommodated.

We will see in the following section that after the transformations given in equa-
tions (1), (2), and (3) are performed, the transformed converted-wave kinematics will
approximate the kinematics of untransformed PP or SS data. It is useful, however, as a
preliminary step, to see what other transformations are produced as a consequence of
those given above. Combining the definitions in the “Notation” section with equations
(1) and (2), we find that

[ﬁ+1]xs+[717—1)xg} (4a)

and
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A= [0+ )| z
ey [( -1)m + (g5 +1) (4)

Then we recall that p, = —dt /dz,, p] = —dt /dz!, etc.; by using the chain rule to
expand these definitions, and by making use of equations (4a) and (4b), we find that

p= [1+71;]ps+(1—\/§)pg} (52)
and
pg’=%[[1—71;}ps+(1+\/:1]pg}- (5b)

These two equations will be useful in the proof that follows; they are also useful when
one is processing data using the method of Controlled Directional Reception (Sword,
1984).

APPROXIMATING THE TRAVEL TIME

If we have a layered medium (that is, v = v(z)), then according the laws of ray

tracing we can write

z

;o dz 4+ dz ) 6)
‘{vs(z)vl—ps vs(z) {vg(z)vl_pg vg(z) (

Differentiating with respect to z, we can then state that for all z (at least, for all z such

that z is less than the reflector’s depth)

g _ 1 + 1 (7)
dz v/ 1 - pgivs,E v,/ 1~ pggvg§

Recall that from our original definitions, v, (2) = v, (2 ), with ~ constant, so that

dt

== . + L . (8)
o vsvl_psvs 7vsvl_7pgvs

My claim is that after converted-wave data is transformed into the new system of

coordinates outlined in the previous section, then the kinematics of these converted-wave
events will approximate the kinematics of conventional waves in the regular system of
coordinates. Equation (8) is a step in this proof: it represents the kinematics of con-
verted waves in a medium in which v is a function of 2. When v = 1, equation (8) also

represents the kinematics of conventional waves.
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We can approximate equation (8) by means of a truncated Taylor series expansion:

1 1
~14 =z, g9
— > (9)
which gives us
dt __ 1 1
aNZ—f'-Q—ps 8+W——’7’pg . (10)
We can now rewrite equations (5) so that
1
po = —L—[(VA+1)pl+ (V3-1) ] (11a)
A+ L)
v
and
P, =—-——“ ]Ps [ +1]pg] (11b)
V(1 + 2 i Kl
Substituting these, and equation (3), into equation (10), and doing a bit of algebra, we
obtain
dt __ 2 2 2
E~7+—v(p;+p;). (12)

(The approximation sign (=) is from equation (10). No further approximations have

been made.)

So now we have an expression that shows, approximately, how converted waves
behave in the transformed coordinate system. The question is, does this expression
matches the approximate kinematics of conventional waves in the untransformed coordi-
nate system? By making the substitutions y =1 and v = v, Into equation (8), and
once again making the approximation shown in equation (9), we obtain the approximate

kinematics for conventional waves:

dt __ 2 1 2 2
d_zN-;+—2_v(p8 +p, ) (13)

Equations (12) and (13) match, so my claim is justified: By means of the transforma-
tions outlined in equations (1), (2), and (3), converted-wave data can take on the approx-

imate kinematics of conventional data, and thus can be processed by existing methods.
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HOW GOOD IS THE APPROXIMATION?

It is reasonable to wonder about the accuracy of the approximation described in the
previous sections. In other words, after the transformation, how closely do the kinemat-
ics of the converted-wave data mimic those of conventional data? In this section are

shown the results of some numerical tests.

One convenient way of displaying travel-time curves is in the form of a contoured
surface in which the horizontal coordinates are y and & or y' and h' (midpoint and
half-offset, in the untransformed or transformed coordinate systems, respectively). These
coordinates differ, of course, from the ray-parameter coordinates (p,, Py, Ps, Pg) that we
have been using. The vertical (contoured) coordinate is the travel time of a ray travel-
ing from a shot on the Earth’s surface to a diffracting point located at y = 0, z — Z0,
and back up to a geophone on the surface. If we assume that v, is constant, the equa-

tion for this travel-time surface is

1 1
t=—v—\/(y—h)2+z7+,w V0 +h)Y +z5 . (14)
8 8

In Figure 2 is such a contoured surface for the case vy = .5, v, — 3 km/sec, and

zg =1 km, with a contour interval of .01 sec. The horizontal coordinates are y and h .

FIG. 2. A contoured converted-
wave travel-time surface based on —
equation (14), in the original sys-
tem of coordinates (y, k). For !
this figure, ~=.5, v, =3 e
km/sec, and zy=1 km. The ai

contour interval is .01 sec.

In Figure 3 is shown the same contoured surface, except that the horizontal coordinates

are now y' and h'. This change of coordinates can be accomplished by rewriting equa-
tions (1) and (2) in the form

hzh"/';(1+%], (15)

- (1-3), (16)
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and then substituting equations (15) and (16) in equation (14), the travel-time equation.

The velocity can be transformed from v, to v by means of equation (3).

So far we have made no approximations. Figure 3 shows the exact travel-time
curve of a converted wave in the new system of coordinates. In Figure 4, however, is
shown the travel-time curve that I have claimed to be approximately the same as that
shown in Figure 3. That is, Figure 4 shows the travel-time curve of an unconverted

wave, but one whose defining equation is given in transformed coordinates:

t =R + VT F R T (17)

k' (km)
'_1 —005 O OoS 1

| i 1

FIG. 3. Another contoured
converted-wave travel-time sur- —
face based on equation (14), but

this time in the new coordinate |

system y', h'!. All other parame- e
ters, including the contour inter- a1
val of .01 second, are the same as @
those in Figure 2. o
=
B
@
.

FIG. 4. A contoured travel-time |
surface, this time based on equa- -
tion (17). It shows the curve that

Figure 3 should be approximating i
if the transformations in equa- o
tions (1), (2), and (3) indeed make gl
converted-wave  data  behave

<
(kinematically) as ordinary PP or = O -
SS data. All parameters are the B
same as those in Figures 2 and 3. o
Zﬂ -
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This equation reflects my claim that the converted-wave travel-time curves in the new

coordinate system are similar to conventional curves in the old system.

The important issue, of course, is how well the two curves, the one in Figure 3 and
the one in Figure 4, match. The answer is shown in Figure 5. Here we see the percen-
tage error, given according to the formula error = (tprg3— tgygq)/to- Here tpqs and
tprg4 are the travel times shown in Figures 3 and 4, while ¢, is the travel time at the
point y =0, A = 0. The contour interval in this plot is 0.1% (0.001 in the above for-
mula). Notice the new horizontal axes: y'/zg and h'/z, Thanks to the relative nature
of the formula we are using, this plot will be unchanged for all values of zg and v,

(different values of v will produce different plots, however).

This is an interesting plot, but it is plotted in a set of coordinates without an
easily-visualized physical basis. To remedy this problem, Figure 6 shows the same
results as Figure 5, but transformed back to the old coordinate system. Now the axes,
y/z¢ and h /z,, correspond to positions on the ground, and we can draw some conclu-

sions about the accuracy of the approximation.

FIG. 5. Contour plot, in the
transformed coordinate system, -
showing the percentage of error
between the travel times in Fig-
ures 3 and 4. Note the z( term
in the denominators of the two
axes. As explained in the text, in <

this plot the only significant ~ O
parameters are ~, which is 0.5, ©

and the contour interval, which is
0.17.

3%

+3% 0%

The first conclusion, which is immediately obvious, is that the approximation is
best at zero offset (as will be shown in the Appendix, this conclusion isn’t Very surpris-
ing, because the transformation equations (1), (2), and (3) were derived so as to give that
result). Next, it is apparent that the approximation has an error of less than 1% out to
a half-offset & equal to z(/2, where 2z, is the depth of the diffracting point reflector.
(Keep in mind that if the half-offset is 2(/2, the actual distance from shot to receiver is

zo.) For half-offsets up to zo (and corresponding shot-receiver distances of up to 2zy),
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FIG. 6. Contour plot of the same !
error as that in Figure 5, but in
the old system of coordinates. As

in Figure 5, the only significant o
parameters are v = 0.5 and the 0
contour interval of 0.1%. «
N O
o

ledlila ! i
+3% 0% -3%

the error does not exceed 6% of the minimum travel time ¢,. For ty = 2 sec, vy = .5,

il

and a P-wave velocity of 3600 m/sec, this result implies that the error will be .02 sec
when the distance from shot to geophone is 2400 m, and .12 sec when the shot-geophone
distance is 4800 m.

DEALING WITH DATA: INTERPOLATION

One problem in implementing this transformation scheme is the necessity of inter-
polating data if conventional processing methods are to be used. For example, Figure 7
shows a typical stacking chart for conventionally-recorded data. Notice that the traces
can easily be “binned” into common-midpoint gathers. In Figure 8 is the same stacking
chart, after it has been transformed into the new coordinate system given by equations
(1) and (2). The traces are no longer aligned along lines of common midpoint; thus it is

no longer clear how such processes as CDP stacking should be carried out.

. . S
FIG. 7. Stacking chart for typi- .‘\//
cal land seismic data, where s
— . —_ L, A ” ’; /1 ,
_qu Az, . T’race posmons.are 3 e X x/,x X x
indicated by x’s. Dashed lines - Vs \\)\)}« X ,\x, S
show common-offset gathers, and = ,x\,xx )g(,'x,\'(&,\'& P
dotted lines show common- 8 XXX ,x\(x\(x X
. 3 4 ,\’\ >\ >&>\ \&1 4 i
midpoint gathers. X ,x\<>g< \()(\< X x
/ 7 4 g 4 7 g 4
X X R XXX X
X ,>(\<x’ xxx’\ x"x&x”
O VO 0.9 9.9
,x\(x\(x\(x P ,x\< XX
of ’ ”, ’, ’ 4
X XXX I K
S S S v

z, (geophone)
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4
o
FIG. 8. Same stacking chart as — . /x’/)( Ix’,)<’/>:<,/
. . B4 ’ ’ o4
that in Figure 7, but transformed e % 'x/x"’x" " X X
. ’ d ’ 4 4
to the new system of coordinates. ) )(’ XX R XXX
Notice that common-offset gath- o | SRS X X
. . B |y X / %~ X o
ers (dashed lines) can still be Lo XXX
made, but that common-midpoint /,x "'x/)(:/(/x , )(/' X
gathers can no longer be made. X XX XS
4 4 x / ’/ rd ,x ’x
v /x /' 7 X ;x /x P x”
XX XA KX
7 x' X , 77
X X X0
A z, (geophone)

The solution to this difficulty, of course, is some sort of interpolation. I chose to
use nearest-neighbor interpolation along lines of common offset, as shown in Figure 9. If
neither neighbor was considered “near” enough, no interpolated trace was generated. In
tests with my relatively coarsely-sampled model data, the results of linear interpolation
along common-offset lines were no better than those of the significantly-cheaper nearest-
neighbor interpolation. The reason for interpolating along only common offsets rather
than along both midpoint and offset axes is that by keeping offsets fixed, we don’t risk
destroying the relationship between travel-time and offset; this relationship is used in

velocity analysis.

z, (shot)

FIG. 9. Magnified portion of the
transformed stacking chart in
Figure 8. This shows the
nearest-neighbor interpolation
scheme. Interpolated traces are
denoted by o’s, which are con-

/"o

B
nected to their nearest neighbors
(x’s) by short lines. Longer lines
connect common-midpoint gath- HS
ers.

z, (geophone)

COMPARISON OF SYNTHETIC DATA EXAMPLES

While I was in the Soviet Union I was given a synthetic converted-wave data set by
Dr. G. Matveenko of VNII Geofizika. This data set was based on the model shown in
Figure 10, which was developed by Boris Zavalishin of the Gubkin Institute in Moscow.
The source produced both P-waves and S-waves, and the geophones were assumed to be

vertical, so the predominant converted waves were of the SP type. The ratio v was set
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to be 1.732. The distances between geophones and between shots were both 100 meters,
there were 51 shots with 25 geophones per shot, and the geophones were laid out in a
symmetrical split-spread arrangement with one geophone lying directly on top of the
shot (an advantage of synthetic data). As seen in Figure 10, the P-wave velocity (v, in

the SP-wave case) varied from 2300 to 4500 meters per second.

Midpoint (Meters)

—01000 9 10.00 20‘00 30'00 40.00 50'00 6090
8 2500
— 2700 T 2300 157
-~ 3000 il
3 3500
=
pre- )
S 20001 4500 4000 i
A 5
g 4200 6
3000+ L
7_
4700 Not a reflectorA
Scale 1000 meters

FIG. 10. Model used to generate the synthetic data in the subsequent figures. P-wave
velocity (vp) is shown in m/sec; S-wave velocity (vg) is always vp /1.732. Each reflector
is labelled with a number. The source produces S- and P-waves of equal intensity, and
the receivers are vertical geophones. Distances between shots and between geophones
are each 100 m. No vertical exaggeration has been applied.

To show how the transformation affected processing, I processed this synthetic data
both before and after making the transformations given in equations (1), (2), and (3).
The first step in the processing involved performing velocity analyses every 500 meters.
Figure 11 shows a velocity analysis, made on untransformed data, at y = 3000 m (this
y is the horizontal axis in Figure 10). On it I have picked both PP and SP events. One
interesting phenomenon is that the peaks corresponding to the SP-wave reflections from
reflectors 5 and 6 (the gently-tilting reflectors in Figure 10) are split. This is the sort of

behavior that makes processing converted-wave data difficult.

SEP-41



358 Sword

Velocity (m/sec)
1500 2000 2500 3000 3500

_‘
3 ——— — W B—
o _ e — W ———

FIG. 11. Velocity analysis of an untransformed CMP gather, at midpoint y = 3000 m.
Triangles denote P-wave velocity picks; squares denote converted-wave picks. Note the
splitting on the converted-wave picks from reflectors 5 and 6.

Velocity (m/sec)
1500 2000 2500 3000 3500

FIG. 12. Another velocity analysis of an untransformed CMP gather, also at midpoint
y = 3000 m, but this time, only the up-dip half of the gather has been used. Again, tri-
angles denote P-wave velocity picks and squares denote converted-wave picks. The
splitting seen in Figure 11 is no longer evident.

SEP-41



Kinematics of converted waves 359

Figure 12 is also a velocity analysis of untransformed data, and is also taken at the
midpoint y = 3000 m, but this time the data set has been windowed so that only “up-
dip” data (that is, data from geophones up-dip from the shot), remains. In this data set,
which comes from a model whose dips are all in one direction, the term “up-dip” is

unambiguous. Here the splitting noted in Figure 11 is no longer apparent.

Velocity (m/sec)

1500 2000 2500 3000 3500
o) ! 1 1 I I
sy —
= e — -
= — ]

— - e T
3 e
o) =

(088)
ﬁD

——

FIG. 13. Velocity analysis of a CMP gather after transformation, again at midpoint
y = 3000 m. Squares denote converted-wave velocity picks. The velocity shown can be
converted to P-wave velocity using equation (3).

Figure 13 is also a velocity analysis of a CDP gather at midpoint y = 3000 m, but
now the data have been transformed according to equations (1) and (2). (In order to do
the transformation, I had to assume that 4 was already known. Since I had specified
v = 1.732 in the model, I used that same value in the transformation. For real data 5y
would have to be determined or guessed at beforehand.) The full unwindowed data set
has been used, as it was for Figure 11. To convert the velocities in Figure 13 to S-wave
or P-wave velocities, one may use equation (3) (this will give rms velocities, of course).
The simplicity of conversion from v to v, is one advantage of the transformation
method: the correspondence of the velocities shown in Figures 11 and 12 to true physical

velocities is not as clear.
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The next four figures, Figures 14, 15, 16, and 17, show CDP stacks of the data that
was analyzed in the previous three figures. Figure 14 shows the result of stacking the
untransformed split-spread data at P-wave velocities. I made this figure to provide a
comparison with the converted-wave stacks in the next three figures. Figure 15 is the
result of stacking the untransformed split-spread data at converted-wave velocities.
Since for some converted-wave reflections two peaks appeared on the velocity analysis,
presenting an ambiguity, I stacked according to the velocities found from analyzing
untransformed up-dip data. That is, in order to produce Figure 15, the data that
appeared in Figure 11 were stacked according to the converted-wave picks in Figure 12
(this is a simplified explanation; in order to stack the untransformed full-split-spread
data, I determined a velocity function every 500 meters by analyzing the untransformed
up-dip data). Figure 16 was produced simply by stacking the untransformed up-dip
data according to velocity analyses based on the untransformed up-dip data. Figure 17
was produced by stacking the full split-spread transformed data set according to velocity

analyses based on that very same data.

The results are reasonably favorable. There is some improvement from Figure 15
to Figure 16: the SP reflections are clearer and are not so obscured by PP reflections.
The steepest-dipping reflector, number 8, is noticeably more coherent. The improvement
from Figure 16 to Figure 17 is also marked. The flat reflectors, especially reflectors 1, 2
and 3, become more coherent (in fact, reflector number 3 is visible only on Figure 17).
There are some tradeoffs, however; reflector number 8 almost completely disappears from
Figure 17. This disappearance is due to a loss of coherence caused by the crude interpo-
lation scheme used. Thus, there is a noticeable improvement when one uses only the
up-dip data (assuming that there is a predominant dip) in the processing of SP
converted-wave data; there is even more improvement when one transforms to the new
coordinate system before processing. One surprise (for me) was that most of the
improvements came in the images of the flat-lying reflectors; I had expected dipping

reflectors to show the most improvement.

The results are gratifying, but there are some caveats. The improvement in image
quality may have been because of the coordinate transformation that was applied, but
there may be other causes as well. One possibility is that I may have used more accu-
rate stacking velocities when I stacked the transformed data. If I were to pick the wrong
stacking velocities for the untransformed data, it would not be surprising if I got poor
results. One also must be aware of the effects of different plotting parameters. For
instance, reflector 5 in Figure 17 looks stronger than the same reflector in Figure 16.

This improvement is not because of the coordinate transformation but because of
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differences in plotting parameters (all reflectors in Figure 17 appear stronger). Thus I
have paid attention to improvements in reflector coherence rather than in reflector

strength.

It should be noted that there is room for further improvement, especially in inter-
polation. Recall that reflector 8 was almost destroyed in Figure 17, probably because of
interpolation problems. Clearly it is important that the spacing between shots and geo-

phones not be too great.

CONCLUSIONS

In this paper it has been shown how a simple transformation of midpoint and offset
coordinates can be used to make converted-wave data look approximately like conven-
tional seismic data. This transformation has been shown to work even when
U, = v,(2), as long as v is constant. Encouraging results were obtained when the
transformation was tested on some synthetic data. It was seen that the success of the

method depends to some extent on how well interpolation can be performed.

There are a couple of potential problems with the transformation method that has
been presented here. One problem is that this method requires that v be known, and
that it be constant over the entire section. Real data might not satisfy either of these
conditions. Another possible difficulty is that S waves typically show anisotropy more
strongly than do P waves, and this anisotropy can be expected to have a certain effect

on the kinematics of converted waves; that effect has not been examined here.

Despite the problems, though, there are advantages to this method (a version of it
has been used for several years by Soviet geophysicists), and it clearly warrants testing
on real data. I am open to any offers of two-component data that can be used to further
test this method.
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APPENDIX

The explanation of how I derived equations (1), (2), and (3) is presented in this
Appendix. We begin with the equation for the travel-time curve of a wave reflected

from a point diffractor at point (zp, 2,):

t =

eoel""‘

Vg thP+ 28 + ml} VR —hY+ 22 . (A-1)

8

Recall that zp is the reflector position relative to the midpoint, y, of the observation
system. If we are concerned with non-converted waves (PP or SS waves), then v =1,

and we can easily solve equation (A-1) for z:

2 4R Y (022,
29 — [1— v2t2 ) [T—Z'R . (A—2)

This equation, when plotted as a function of zg versus zp (with all other variables held
constant), produces an ellipse (the aplanat). This ellipse is probably familiar to those
who have dealt with non-zero-offset sections. Its center of symmetry is located at
Ip — 0.

The algebra generally becomes more difficult when we are dealing with converted

waves. Now 7 # 1, and solving (A-1) for z yields
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2f =(—111—)2—[—(1—$)((x3+h)2—$(z3—h)2)+ (A-3)
7

+ [1+%)v82t2— 21’);t\/v82t2—4x3h(1—$]

When plotted as a function of z, versus zg, this equation produces a figure that looks
somewhat like an ellipse . One of the main differences between this pseudo-ellipse and
the true ellipse of (A-2) is that the pseudo-ellipse has its approximate center of sym-
metry (only approximate, because the pseudo-ellipse isn’t quite symmetrical) not at

zp = 0, but slightly off to one side.

Our task is to find an ellipse that approximates this pseudo-ellipse. First, let us
make a zeroth-order approximation to (A-3) by setting the square-root term in (A-3)
equal to v, t. Then we can show that for this approximation, the maximum point, and

thus the center of symmetry, of our pseudo-ellipse will be located at

1

ZR:—h' ,1 . (A—4)
1+

This finding suggests that we should change to a new horizontal system of coordinates

1-

1
1 (A-5)

g =zp + h- -
5

14+
In this new coordinate system, our ellipse has its approximate center of symmetry at
zg = 0. (This equation presents the same transformation as that in equation (1), if we
make the substitutions 2§ = zq-y' and 2z = z¢—y.) This transformation was first

suggested by Puzyrev (1975).

Now we substitute zg for zp in (A-3), to give us

4hxg
9

g = [1_17:2_) [ 1—_)[ ) +

1 20,2t 4h 4h°
+(1+?]vs2t2~ ; \/1 - vs2t2xR’(1—%] + 2t2[1"_)

So far we have made no approximations. The “proper’” substitution from TR to zf

(A-6)

was found using a very rough approximation, but the substitution itself was done accu-

rately. Now, however, we will approximate the square-root term in (A-6) by using the
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Taylor-series expansion

T z z?
Notice, by the way, that this expansion is exact when either y =1 or A = 0, and that
1t is carried out to one term further than was equation (9) in the main text.

It can be shown, after a fair amount of algebra, that when we approximate the

square-root term in (A-6) using the expansion in (A-7), we obtain

2
202 ~ [1— 4h2 2]
Yu,“t

v

82t2
— 2-z}g2l. (A-8)
(1+=)

This is the equation for an ellipse in z4 and z,.

The goal now is to find a coordinate transform that will make the ellipse in equa-

tion (A-8) look like that in equation (A-2). One convenient pair of transforms is

2

Bl=h —= (A-92)
\/:1(1+%]
2
v =2 (A-9b)
1+%

(These transforms, of course, correspond to equations (2) and (3) in the main text.) By

substituting equations (A-9) into (A-8) we get

9 4hl2 ] [ v2t2 /2]
2g =~ |1- -z ) A-10
0 [ v2t2 4 R ( )

which is identical in form to equation (A-2).

Thus we have obtained equations (1), (2), and (3) by finding an ellipse, in the form
given in equation (A-2), that would approximately fit the pseudo-ellipse given in equa-
tion (A-3). Clearly, these transformations are not unique. Anything that changes equa-
tion (A-8) into something identical in form to (A-2) will work just as well. The
transforms given in (A-9) are convenient, however, in that they require changes only in

y and & rather than in ¢ or 2.
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