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A review of some seismic inversion methods

Kamal Al-Yahya

ABSTRACT

In this paper, we will review some seismic inversion methods. These methods vary in
their approaches and the assumptions they make. Some results will be given for further

illustration of the differences.

INTRODUCTION

In the seismic experiment, the energy source used at the surface of the earth is ideally
represented by a delta function 6(r, ), where 2 = 22 + y% + 22, and we measure the field
¥(r,t) at the surface z = 0 over a range of time and offset. The physical quantity %(r, t)
that is measured can be pressure, velocity, or acceleration. Qur task is to interpret these
measurements to determine the structure of the subsurface. Migration is one method that
is commonly used to interpert the data: it moves (or migrate) events to where they belong,
and thus provides a better image of the subsurface than that of the unmigrated section.
We know that each method of migration involves few approximations; but we also know
from experience that they are usually good approximations. We should remember first,
that migration needs the velocity of the subsurface and it does not provide it, and, second,
that other parameters of the subsurface, such as density and bulk modulus, cannot be
deduced from migration. (Al-Yahya and Muir, (1984) and Yilmaz and Chambers (1984)
attempted to use migration itself as a means to estimate the velocity of the subsurface.)

Other methods of interpretation must be used to deduce the density and other elastic
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(or acoustic) parameters of the subsurface. The ideal method would be to start with the
differential equation governing the propagation of waves inside the earth and work out the
distribution of the earth’s parameters {density, velocity, or bulk modulus for example).
This procedure is referred to as inversion. There are various inversion methods that can
be classified as follows: direct methods and iterative methods.

In an iterative method, an initial model of the medium is used to produce a synthetic
seismogram. The model is then modified to produce a seismogram that better resembles
the data. The model can be modified with generalized linear inversion, which eventually
leads to a least-squares solution (Cooke and Schneider, 1983). The least-squares solution
is the best solution from a probabilistic point of view.

Direct methods can be divided into two groups: exact methods and approximate
methods. It should be noted, first, that both of these methods involve approximations.
The difference between them is that approximate methods uses approximated equation
from the beginning, whereas exact methods use approximations at a late stage; and, in
the exact method, the approximations are used only in solving the equations not in the
equations themselves,

A few SEP papers have discussed inversion, especially the Born inversion. This paper
discusses the Born inversion with equations that are cast in a different form, which hope-
fully makes them more understandable. We will look at the Born inversion in the general

context of inversion and see its relation to migration.

THE RELATION BETWEEN MIGRATION AND INVERSION

Both migration and inversion start with same physical law that governs the prop-
agation of waves in the medium, namely the wave equation. From this point they use
different methods to reach their final goal. It is interesting to see what relationship of any
exists between the two. Cheng (1984) studied this relationship between migration and one
kind of inversion, the Born inversion (discussed below). He showed that they are related
mathematically by

%a(z, ¥, 2) = he(@,y, 2) * * * R(z, y, 2) (La)
i ;
Ea(a’) Y, Z) = Mzg[pmod(za ¥,z = Oa t)] 3 (lb)

where
a(z,y, z) is the velocity function defined by equation (3)

* * ¥ denotes three-dimensional convolution

8
h,-(ﬂ!, ¥, z) = %é’ﬁ'(f)
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Mig is the migration operator
p(z,y,2 = 0,t) is the recorded data
Pmod(2, ¥, 2 =0,t) is the modified data
The modification of the data is done by convolving the recorded data with hy(z, y, t), where

1 H(E-3) [62 4 v2i? s v2i? vzt"’)%]

ha(z, y,t) = @z pv amEsl— )T+l —)+2(1- p

p=vaz+y
Equations (1a) and (1b) say that we can get the Born inversion result by convolving
the reflectivity, which is the result of migration, with the spatial operator h,(z,y, z);

alternatively, we can get it by modifying the recorded data and then migrating the modified
data.

THE BORN INVERSION: a direct and approximate method

Assuming a constant density, the one-dimensional acoustic wave equation for the
scattered field in the frequency domain is

0?2 w?
- 8C — 0
942 + V2 (2) }1/) (2,w) (2)
If we define 5
alz) = =20~ — 1 (3)
e R
where v, is a reference velocity (usually the velocity at the surface), equation (2) can be
written as
% w? w?
{QTWEWW%W=—EMH¢VM) (4)

Clayton (1981) showed that this reference (or background) velocity can be made to be a
slowly varying function of depth.
Let’s now consider the equation
2 W?
{55 + v_g'}G(z’w1 €) =-6(z—¢) (5)
Equation (2) is similar to equation (5). The difference between them is that the latter has

a source (of unit strength) located at z = €. G(z,w, £) in equation (5) will be recognized

as the Green’s function i
e—t-g’(ﬂz—él

G(z,w, &) = oz (6)

Yo
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As shown in the appendix, equations (4) and (5) can be combined to give

- 2 poo

V(s w)=e" %" + 22 | a(€)p(&w)G(zw, £)de (7)

Y Jo

where we decomposed the total field ¥/(z, w) into an incident field e "% and a scattered
field °°. Equation (7) is an integral equation where the unknown is a(¢). Note that the
equation we arrived at is exact. No approximations have been made so far. The Born

approximation is an attempt to make this equation easy to solve.

The first Born approximation

For the first Born approximation, the total field ¥(¢,w) in the integrand of equation
(7) is replaced by the incident field ¢'"(z,w) = e "% ¢ which means that this approxi-
mation does not hold for media with strong contrasts. As shown in the appendix, this
approximation leads to

23

afs) = —4 /0 " R(dt | (8)

from which the velocity function can be obtained as

/ 1
'U(_Z) = VYo m ;

which imposes the restriction a(z) > —1.

The second Born approximation

A second (and better) approximation can be obtained by the following change of

variables ,
dz * dz
i A ATE

d€
From the appendix, we see that this leads to

v(€) = exp[Z/O

and the depth z can be found from equation (9)

B R(t)dt] (10)

€
2(8) = /0 o(&)d€’
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- .
**o, but in the second

we replaced it by exp[—iw foz v—(ladé}, which is a WKJB approximation.

We see from Figure 1 that the second Born approximation yields a better result than

Note that in the first Born approximation we replaced the field by e~

does the first. The difference between the two methods is made very clear when the velocity
contrast is big. In fact, if we used a larger contrast, we would not be able to reconstruct the
velocity function using the first approximation, because of the restriction that o should be
greater than -1. Another difference between the two approximations, is that the first one
requires a background velocity and thus is sensitive to the choice of this velocity. Weglein
and Gray (1983) showed that when the first Born approximation is used, there is a tradeoff
in accuracy between the velocity and the position of the reflector. We see in Figure 1 that
the first Born inversion places layer boundaries before their actual position.

The two approximations we have discussed are the first in a series. Clayton (1981)
showed that it is possible to go to higher-order approximations by using more terms in the

Born series; adding terms in the series means including higher-order multiples.

AN EXACT INVERSION METHOD

We now look at an exact inversion method. The reader will remember that approx-
imate methods of solutions are used. The main advantages of direct methods are their
speed and independence of an initial guess; their main problem is stability.

The most important shortcoming of particular this method is that it needs all of the
low frequencies, so it is useless for ordinary seismic surveys in which low frequencies are

missing. Also, because this method is nonlinear, scaling the data is a very important step.

The algorithm
Starting with the observed field p(t), we scale it by —2v2 to obtain B(t).

B(t) = p(t)

'55'3*
Weidelt (1972) suggested the following algorithm to reconstruct the velocity function of
the subsurface from B(¢).

1. A(&,n) =B(E+n) + [S A&, )[B(E+1) +B(n - t)ldt, |y| < z,2>0

2. G(§) =1+ 5, A(€ t)dz

3. v(z) = gitg) and  2(¢) = [ ggydé
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The first Born approximation :
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FIG. 1. The result of Born inversion. The model in both cases is the same (the solid
line). Notice that the scale is different in each case.
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The crucial step of the algorithm is the first one, which involves solving an integral
equation for A(4, ). The last two steps involve direct and easy computations, giving the

velocity v(z) and the corresponding depth z. The proof of this theorem can be found in
Weidelt’s paper (1978).
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FIG. 2. The true (dashed line) and the reconstructed (solid line) velocity obtained by
using Weidelt’s theory.

I have tested this algorithm on different models. Figure 2 shows a synthetic seismo-
gram for a model consisting of 16 layers. It also shows the actual and the reconstructed
velocity functions. The result can be seen to be very satisfactory.

CONCLUSIONS

We have seen that inversion can be direct or iterative and that direct methods can
be exact or approximate. The direct methods have the advantage that they do not need
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an initial guess; whereas direct methods might suffer from stability problems. To alleviate
the stability problem and to make the inverse problem easier to solve, approximations are
made to the direct methods; the Born inversion is a popular one.

We also have seen that migration and inversion are related processes. In particular,
there exists a mathematical relationship between the Born approximation and migration.

REFERENCES

Al-Yahya, K., and Muir, F., 1984, Velocity analysis using prestack migration, this SEP
report.

Cheng, G., 1984, Exact and approximate solutions to some geophysical inverse problems,
Ph.D. thesis, University of California, Berkeley.

Clayton, R. W., 1981, Wayvefield inversion methods for refraction and reflection data, Ph.D.
thesis, Stanford University.

Cooke, D. A., and Schneider, W. A., 1983,, Generalized linear inversion of reflection seismic
data, Geophysics, v. 48, p. 665-676.

Weidelt, P., 1972, The inverse problem of geomagnetic induction, Zeitschrift fiir Geophysik,
v. 38, p 257-289.

Weglein, A. B., and Gray, S. H., 1983, The sensitivity of Born inversion to the choice of
reference velocity: A simple example, Geophysics, v. 48, p 36-38.

Yilmaz, O., and Chambers, R. E., 1984, Migration velocity analysis by wave-field extrap-
olation, Geophysics, v. 49, p. 1664-1674.

SEP-41



Inversion Methods 345

APPENDIX

Deriving the first Born approximation
Multiply equation (4) by G(z,w, ) and equation (5) by ¢(z,w) and subtract to get

2 2 2

G(z,w, €)aa_zz'¢(z’ w) — z/;(z,w)aa?G(z,w, €) = ¢¥(z,w)b(z — €) — 5 a(2)P(w, 2)G(z,w, £)

The left-hand side can be shown to vanish upon integration, and we are left with

vizw) = [ aterwie.wots,w erae (4-1)

Yo

Now 9(z,w) can be thought of to consist of an incident field 1'"(z,w) plus a scattered
field ¥°°(z,w). The incident field is a plane wave that can be written as e iv0?, Putting
these substitutions in equation (A-1) leads to equation (7).

Substituting for G(z,w, £) from equation (6), we obtain

- W : W oo ;W
Y(z,w) = "% 4 ———g'%* / a(g)e ¥ tde (A-2)
2tv9 0
Therefore, the reflection coefficient is the coefficient of ' %% in the second term on
the right-hand side of equation (A-2).
) oo

R(w) = 570= i a(g)e ot (A - 3)

Integrating the right-hand side by parts,
—2i &g

oo * 9 —gi
R(w) = —w—[a(é)e_z,._w_] v /0 ‘;(65)6 Puotae

T 24y, ' 2iv, -—Zi%

Now a(0) = 0 and assuming that a(oo) = 0, then

__1 [® 0§ sige
R(w) = 4/_00 3¢ ° dé¢

Taking the inverse Fourier transform gives

19
R(2t) = —gé—ia(vot)

from which we derive at equation (8).
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Deriving the second Born approximation

In terms of the travel time £ defined in (9), equation (2) can be written as

Ve (£,0) + W B(6,w) = Eye(¢,w)

Using the same method of used in obtaining (A-1), we arrive at

$(n,w) = e~ — /000 [%(log %f))] [%w(f,w)]G(q, ¢, w)de

Substituting for the Green’s function and evaluating at » = 0, we obtain the reflection

coefficient | o
Rw)=1 /O F(§)e e ag (4~ 1)
where p
1(6) = 21028

Equation (A-4) defines a Fourier transform pair from which we can write

flé&) = 4/00 R(w)e*“dw
or

(&) = 4R(2¢)

Substituting for f(£), we arrive at equation (10).
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