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Monte Carlo techniques: an overview

Daniel Rothman

INTRODUCTION

The statics algorithm I discuss elsewhere in this report (Rothman, 1984; hereafter
referred to as paper 1) is a straightforward implementation of a technique originally
introduced by Metropolis et al. (1953). While the algorithm is simple, its implications
and Justifications can be subtle. The Metropolis algorithm has been popular during the
last 30 years among physicists attempting numerical calculations with large systems, and
has accordingly been the subject of extensive review. This paper presents a further
review of the technique, with emphasis given to geophysical applications. More efficient
versions of the basic Metropolis technique are discussed; one method appears particularly

promising for residual statics estimation.

AN HISTORICAL PERSPECTIVE

Much of the following discussion is based on material in Hammersley and
Handscomb (1964), which appears to be the most readable account of the relevant Monte

Carlo theory.

Historically, Metropolis’ Monte Carlo method was designed to “solve” the following
general problem. A physical system is in thermal equilibrium if its probability of being

in some state o with energy E (o) is proportional to the Boltzmann factor
e P E (o) , (1)
where 8 = (kT )™, T is the absolute temperature of the system, and k is Boltzmann’s

constant. The usual applications in physics are concerned with evaluations of the

ergodic averages

ff (0)e PEC)d o

<J > =
f fe‘ﬂE(")da

(2)
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where f is some function of the system’s states, and < f > is the expectation of f. In

a discrete phase-space the integrations would of course be summations.

In statistical mechanics, the number of degrees of freedom in phase-space is large,
so 0 is an n-vector where n is typically of the order of Avogadro’s number (1023). Usu-
ally (2) cannot be evaluated analytically; moreover, numerical evaluation is non-trivial
due to the high dimensionality. Evaluation of (2) is thus performed by Monte Carlo

techniques.

The simplest technique of Monte Carlo integration would be the following: ran-
domly generate o within some interval, evaluate the integrands in (2), and save the
result. Repeat this some large number of times and then sum the results to obtain an
estimate of <f >. Unfortunately, this technique is poor because the exponential factor
in (2) causes the greatest contributions to the integrals to occur in a small region of
phase-space [where E'(0) is minimum] that is likely to be missed by the random number
generator. A more appropriate technique is importance sampling (Fosdick, 1963; Ham-
mersley and Handscomb, 1964). One randomly generates states with a probability den-
sity of

P(o) = ﬂ ; (3)
f e PE()] 5
Estimates of < f > are then simple, uniformly weighted averages of the S ’s evaluated

at these randomly generated states.

Numerical integration of (2) is thus reduced to devising a technique for randomly
sampling from (3). This, too, appears difficult because of the nasty multidimensional
integral in the denominator (in its discrete form, the denominator is the partition func-
tion of statistical mechanics). Metropolis et al. overcame this problem by generating a

Markov chain that asymptotically approaches the probability density (3).

Before getting more deeply into Markov chains, let’s assume that we have per-
formed a Monte Carlo simulation that generates states with the Gibbs measure (3).
What then? If you’re a physicist you’ll probably want to perform a uniformly weighted
average of the algorithm’s output at each time step, which is equation (2). If you’re a
geophysicist trying to estimate residual statics, however, things are somewhat more com-
plicated. For this task, we need not only run the algorithm to equilibrium, in which
states are generated with probability (3), but we must attain equilibrium at a tempera-
ture that is sufficiently low so that equilibrium closely approximates the state in which
stack power is maximum [FE (o) is minimum]. Usually, then, we will simply choose our

estimate of statics to be the configuration with the greatest stack power.
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MARKOYV CHAINS

I will review only the basic essentials of Markov chain theory necessary for the
ensuing discussion. The interested reader should refer to chapter 15 of Feller (1968) or

any other of the myriad of texts that go into greater detail.

Let X = {X, X5, -+, X;} be a sequence of random variables in which any X;
may assume one of the states in 0 = {0}, 05, - - -,0,}. A Markov chain is a sequence
in which the present depends only on the immediate past; that is, the probability distri-
bution of X; depends only on X;_;, and nothing previously. Formally,

P(Xy=0; | Xs4=0;_, -+, Xy=0;, X1=0;) = P(X,=o0; | Xio1=0; ) . (4)

4y

For the Markov chains we shall consider, the probabilities p;; of transition from state ¢

to state 7 are stationary in time. Equation (4) can then be simplified by writing
pij = Ploy—o;) = P(X,=0; | X, 1=0;) . (5)

Let p,-](") be the probability of transition from o, to o; in n (time) steps:

pi]") = P(thaj |Xt—n :ai) . (6)
The n-step transition probabilities may be calculated by summing over all possible
paths 0;0; - - -0y o; starting at g;. For example, p,-J(l) = pij,
) = Y PivPyj (7)
14

and, by induction,
P = Ypi,p 37V . (8)
14

The transition probabilities may be assembled in a matriz of transition probabilities
P = {p;;}. P is called a stochastic matrix because each pi; = 0 and each row sums to
unity. Let the probabilities {7;(n)} represent the probability of being in state o; at

time n. Assembling these in a row vector x(n ), we see that
(1) = =(0)P ,

where m(0) contains the initial state probabilities. The n -step transition probabilities in

equation (8) may now be concisely written as
#x(n) = x(0)P"

It is easy to show that P" is also a stochastic matrix.
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Markov chains are generally classified in ways that describe the the passage
between all possible states. A Markov chain is irreducible if every state can be reached
(over time and with some positive probability) from every other state. An individual
state o; is termed periodic if the probabilities of recurrence p,-,") are non-zero only if n
is some integral multiple of ¢; otherwise o; is aperiodic (aperiodic states are far more
common). We restrict ourselves to discussion of chains that have a finite number of pos-
sible states. One of the basic theorems for Markov chains states that if a chain is

irreducible, finite, and aperiodic, then the limits

II, = lim p,-J") (9)

J
n—o00

exist, are unique, and are independent of the initial state o;. Furthermore,
and

I = Y Ipi; - (11)
i

Conversely, if I1; exist satisfying (10) and (11), and if the chain is irreducible and
aperiodic, then the I1; are given by (9). We designate as ergodic those Markov chains
that exhibit the limiting probabilities (9).

The distribution {II; } is called the equilibrium distribution. The term equilibrium
has physical significance. In statistical mechanics, an isolated system is said to be in
equilibrium if its current state is independent of its initial state; that is, if all memory of
its initial configuration has been washed away due the multiplicity of events. For a
Markov chain, we say that equilibrium has been attained if the current state-probability
vector is independent of the initial state-probability vector. We designate this equili-

brium vector as Il and observe the limit

II = Ilim x(O)P"

n—oo

Furthermore, a matrix representation of (11) reveals that IT is an eigenvector of P, with

eigenvalue 1:
I =1P .

Finding the equilibrium probabilities may thus be cast as an eigenvalue problem. [See

Claerbout (1976) or Howard (1960) for an exposition using Z -transforms.
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METROPOLIS’ MARKOV CHAIN

To show that the Metropolis algorithm does indeed converge to a Gibbs distribu-
tion, we (1) assume a discrete system, (2) construct the transition-probability matrix

that contains the acceptance probabilities, and (3) show that

e _ﬂE(a])

T =) = ey
j

(12)

is the equilibrium distribution for P.

Metropolis avoids evaluation of the denominator of (12) by deft use of the ratios
H] /Hx — e—ﬂ{E(dj)—E(O',)] —_— e—ﬂAE (13)

to define his transition probabilities. In my residual statics algorithm, AE represents
the change in stack power due to a change in the value of a given shot or receiver static
(hereafter referred to as parameters). The algorithm sequentially “visits” each parame-
ter and performs a random perturbation of its present value. Perturbations that
increase stack power are always accepted, and perturbations that decrease power are
accepted with probability exp(-BAE). One iteration is completed after each parameter
has undergone an attempted transition. To describe the probabilistic change in the
value of the m th parameter, we construct a transition-probability matrix P(m). We
assume that there are a total of M parameters, and that each parameter may be
assigned one of N values. Thus there are N¥ possible states, or configurations, of the
system, and P(m) is an NM by N matrix. Each row contains only N non-zero ele-
ments, since only N new states are directly accessible from any given state. There are
M distinct transition-probability matrices to describe the transitions of each parameter.
The matrix of transition probabilities that describes the changes from iteration to itera-

tion is given by the product of the M matrices:

P = P1)P(2) - -P(M) . (14)
To show that II in equation (12) is the equilibrium vector for P, we will first show that
Il is an eigenvector with eigenvalue 1 for each P(m). Then II is also an eigenvector
with eigenvalue 1 for P. Assuming (but not proving) that P is irreducible and that all

states are aperiodic, we can conclude that the Markov chain is ergodic and that {I1;} is

its equilibrium distribution.

We now construct P(m). Assume that the present configuration of values for all
parameters Is in state o;. To update the m th shot or receiver static, the algorithm ran-

domly perturbs this parameter’s value to put the system in state o; with probability
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pij(m). The p;j(m) satisfy

Pi;'(m) = 0, EP:;(m) =1, and p,-;(’m) = pj;(m) . (15)

The pi;(m) define a symmetric N¥ by NM transition-probability matrix, with at most
N non-zero elements in each row (because the value of only one parameter changes). In
the algorithm of paper 1, all non-zero pi;(m) are equal, so that random moves are uni-

formly likely between the minimum and maximum allowable static shifts.

Acceptance or rejection of this random move depends of course on
exp(-BAE) =1I1; /II;. The probabilities defining the transition of the m th parameter

are then

pij(m) = (16a)
pi; I; /I; > 1
for i & 7, and

pi(m) = pi(m)+ Y'pj(m)(1-10, /TI;) (16b)

J

for ¢ = j, where )} is taken only over values of j such that II; /II; < 1. We see here
the familiar acceptance criteria: if energy (negative stack power) decreases, the random
move Is accepted, otherwise it is accepted only with probability exp(-BAE). After some

algebraic manipulation, one may readily show that (Hammersley and Handscomb, 1964)
pi; = 0, %;Pij(m) = 1 (17)
and
I, = %JH‘ pij(m) . (18)

By (17), P(m) = {p;;(m)} is a proper transition matrix, and by (18), Il = {1} is a
row eigenvector with eigenvalue 1 for P(m). By (14), I is also an eigenvector with
eigenvalue 1 for P. If P is irreducible, then II is its equilibrium vector. Each P(m) is
not irreducible, because repeated transitions of the same parameter would simply stay
among N states. However, since each P(m) contains a non-zero transition probability
for each possible value of the m th parameter, we may readily assume that P is irreduci-
ble. We also assume that all states are aperiodic. Thus, by the limit theorem in the
previous section, the chain is ergodic, and its equilibrium distribution is the Gibbs distri-
bution (12).
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ALTERNATIVES

Needless to say, the Metropolis algorithm is slow. Thirty years of use have led to a
few good ideas in the physics literature, however, and the prospects for computational

speedup are fortunately far from dim.

Any thoughts on efficiency should properly focus on obvious weaknesses. This is
clearly a problem dependent area, so I shall abandon most attempts at generality to get
down to the central issue: residual statics estimation. The basic problem facing the
statics algorithm I discussed in paper 1 is its slow convergence upon settling in a
minimum (i.e., equilibrium at low temperature). This is due to the way the algorithm
chooses its random moves - for each visitation to a shot or receiver static, a random
guess is made, which is then accepted or rejected. The random guesses are made with
the probabilities pi;. As I mentioned earlier, the implementation in paper 1 was such
that the random guesses were uniformly likely between some predetermined maximum
and minimum value for each static. A typical application might search for, say, statics
within +200 msec. Coarse discretization at 8 msec. intervals yields 51 possible values
from which to draw a random guess. Near a minimum only a very few of these 51 can-
didates is an acceptable guess, so it is clear that the present set of random moves leaves

something to be desired.

A simple view

One simple alternative is to choose a more intelligent set of p,-;f. We might suppose
that the range of candidates for random guessing should be narrowed near a minimum.
For example, instead of always drawing guesses from the range + l, where | is the max-
imum expected static, we might instead choose from s+ ', where s is the parameter’s
present value and /' is some dynamically adjustable parameter that gets smaller so as to
maintain a stable acceptance/rejection ratio at around, say, 1. There is a pitfall here,
however. If we want to be able to escape a local minimum, !/ must be at least twice as
wide as the dominant period of the data to insure that a skipped cycle can be corrected.

Thus I’ may still be unacceptably large.

The heat bath method

These ideas do, however, indicate a more promising approach, in which the entire
set of the most likely candidate moves for a given parameter are known before any ran-
dom guessing is made. Consider the following thermodynamic analogy. Imagine all the
parameters except z, to form a constant heat bath around z,. Over time, z, would

exhibit thermally induced fluctuations and eventually settle into a local equilibrium
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within its heat bath. If z,, can assume any of N values, then this one-parameter system
can assume only N energy levels, which are distributed in proportion to exp[-BE (=, )].
To simulate this algorithmically, we would choose new values for z,, with probability
proportional to exp[-8E (z,,)]. This allows us to concentrate on the most likely candi-

date moves, and forget about the problematic p,-;- entirely.

The above technique is called the heat bath method (Rebbi, 1984; Creutz, 1984).
Choosing new states with probability proportional to exp[-AE (z,, )] means making tran-
sitions with the matrix

P'(m) = lim P"(m) . (19)

n—o0

Recall that P(m) is NM by N™ and that it contains N non-zero elements per row.
These N elements may be grouped into N™~! submatrices Q; that each contain N
rows and N columns. Each Q; describes the transition from state o; to o ; for changes
in which only parameter z,, changes. The Q; are all stochastic matrices that may be
analyzed independently of the others. Each Q; is obviously irreducible because all
entries are non-zero. By the analysis of the previous section, each Q; has equilibrium
probabilities proportional to exp(-8E (z,, )]. One might imagine an algorithm that con-
tinually updates z,,, randomly perturbing and accepting or rejecting according to the
Metropolis rules many times before going on to z,, +1- Eventually the initial value of z,,
would be forgotten and a local equilibrium would be reached. This is equivalent to
choosing and accepting random guesses for z,, with the transition matrix P'(m). We

now comnstruct
P’ = P(1)P'(2) - - - P'(M) . (20)

Since (12) is an eigenvector with eigenvalue 1 for P(m), the same is true for each P'(m),
and also for P/. Because P is irreducible and aperiodic, so is P’. Thus the Gibbs distri-
bution is also the equilibrium distribution for P/, and the heat bath algorithm produces

results equivalent to the Metropolis algorithm.

A statics algorithm using the heat bath method would be the following. For each
shot and receiver static z,,, the algorithm calculates stack power ¢ as a function of
static shift s; for each of the N possible shifts. It then chooses a new value for z,, by
randomly sampling from the probability distribution

~Bém (2;)
P(2y=s;) = —p—m—-— . (21)
> o PPm(s;)

j=1
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Equation (21) is essentially an exponentiated crosscorrelation function with unit area.
We see this by noting that the crosscorrelation function of infinite time sequences wy

and y; differs from a stack power function by the total power in w, and y,, a constant:

#(s;) = Y (w +?/t+a]-)2 = ), w Yivs, T ¥ owi+y? . (22)
t t t

For finite sequences w;, and y,, the difference between power and crosscorrelation is only
approximately constant, but for computational purposes they may usually be taken to

be equal.

Each random heat bath move will of course require about N times the computation
that an equivalent Metropolis move requires, so it may appear that we’ve gained noth-
ing. For my residual statics algorithm, however, this is not the case. I currently do my
energy function calculations in an (FPS 120B) array processor. It turns out that
crosscorrelation over a fair number of lags is roughly equivalent in AP time to a simple
one parameter stack power calculation. Thus the information in (21) may be gained for
little additional cost. I've recently implemented the heat bath method, and my early
tests appear to converge considerably faster than equivalent Metropolis runs. (See Resi-

dual statics estimation by simulated annealing: field data results, this report.)

No repeated moves

Once we go to the trouble to compute (21), it may still be that descent into a
minimum is sufficiently deep enough so that repeated visits to parameters produce
changes too slowly. Bortz et al. (1975) describe a method that continuously updates a
table that indexes each parameter according to its probability of changing. Each step in
the Bortz algorithm is a random selection from this table, and always produces a change.
Unfortunately, updating this table after each move requires evaluation of (21) not only
for the parameter undergoing the change but also for all of its neighbors. For statics,
this entails reevaluating (21) for all shots and receivers within a cablelength, typically on
the order of 100 times. Thus we can expect that the Bortz algorithm would only be use-
ful when the acceptance/rejection ratio falls below about .01. I foresee little utility for

this approach in residual statics estimation, but it may be helpful elsewhere.

CONCLUSIONS

The Monte Carlo techniques that can be used for simulated annealing are methods
that produce random samples from a Gibbs probability distribution. Each Monte Carlo
algorithm described here may be cast as a Markov chain. The equilibrium distribution

of these Markov chains is the Gibbs distribution. For a sufficiently low temperature,
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reaching equilibrium is equivalent to locating the energy minimum (i.e., optimization).
Thus studies of Markov equilibrium properties are essential to studies of optimization by

simulated annealing.

Of the several alternatives to the basic Metropolis algorithm, the heat bath method
appears the most promising for residual statics estimation. Because this algorithm
chooses random moves from a local equilibrium distribution, its approach to equilibrium,
and therefore its convergence to the global minimum, is expected to be faster than the

simpler Metropolis technique.
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