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Nonlinear inversion, simulated annealing, and
residual statics estimation*

Daniel H Rothman

ABSTRACT

Nonlinear inverse problems are usually solved with linearized techniques that
depend strongly on the accuracy of initial estimates of the model parameters. With
linearization, objective functions can be minimized efficiently, but the risk of local,

rather than global, optimization can be severe.

This paper addresses the problem confronted in nonlinear inversion when no good
initial guess of the model parameters can be made. The fully nonlinear approach
presented here is rooted in statistical mechanics. Although a large nonlinear problem
might appear computationally intractable without linearization, reformulation of the
same problem into smaller, interdependent parts can lead to tractable computation,

while preserving nonlinearities.

I formulate inversion as a problem of Bayesian estimation, in which the prior pro-
bability distribution is the Gibbs distribution of statistical mechanics. Solutions are
obtained by maximizing the posterior probability of the model parameters. Optimiza-
tion is performed with a Monte Carlo technique that was originally introduced to simu-
late the statistical physics of systems in equilibrium. The technique is applied to resi-
dual statics estimation when statics are unusually large and data are noise-contaminated.
Poorly picked correlations (‘“cycle-skips’ or “leg-jumps”) appear as local minima of the
objective function, but global optimization is successfully performed. Further applica-

tions to deconvolution and velocity estimation are proposed.

*This paper is a revision of my SEP-38 paper, “Nonlinear inversion by stochastic relaxation with applica-
tions to residual statics estimation.”
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INTRODUCTION

Many of the problems encountered in the analysis of geophysical data are essen-
tially problems of data inversion: data are usually collected on the Earth’s surface, and
we try to infer a physical parameterization of the Earth’s interior, given these surface
observations. We do this by first constructing a mathematical model in which the physi-
cal parameters are unknowns. Inverse problems are then usually solved by minimizing a
function (or functional) defined over the space of model parameters. Questions of
uniqueness aside, these optimization problems can be broadly classified into two types:
those that contain only one minimum (by the usual definitions from calculus) and those
that contain more than one. The case with one minimum is called linear inversion
because the solution may be obtained by (approximately) solving a set of linear equa-
tions. When there are many minima no such set of linear equations exists unless impor-
tant additional assumptions are made. In the absence of these assumptions we must
perform nonlinear inversion - ideally, the location of the global minimum in the presence

of many local minima.

Conventional approaches to nonlinear inverse problems rely on obtaining good ini-
tial estimates of the model parameters so that the remaining perturbations of the param-
eters satisfy linear relations (Parker, 1977; Aki and Richards, 1980; Lines and Treitel,
1984). Global optimization without a good initial guess appears computationally intract-
able - the parameter space is simply too large for every possible choice of parameters to

be evaluated.

This paper addresses the problem confronted in nonlinear inversion when no good
initial guess of the model parameters can be made. To make the problem computation-
ally tractable, a particular statistical representation of the model parameters is intro-
duced. This statistical representation is adapted from stochastic models used in statisti-
cal physics to describe the interactions within systems containing many degrees of free-
dom. This model is appropriate for large problems that can be naturally subdivided into

smaller, interdependent subproblems.

The use of a statistical model is formally expressed by defining a joint prior proba-
bility distribution for the model parameters and by casting the problem in the frame-
work of Bayesian estimation. The resulting posterior probability distribution yields the
most general form of the solution; locating the maximum of the posterior probability dis-
tribution determines the most probable set of physical parameters, given the observed

data and the prior probability distribution.
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For nonlinear problems the posterior probability distribution still contains many
local extrema. Global optimization is possible, however, by exploiting the form of the
statistical model (the Bayesian prior). Reasoning by analogy with statistical physics, I
employ the method of simulated annealing (Kirkpatrick et al., 1983; Geman and Geman,
1984). Simulated annealing is a Monte Carlo optimization technique that mimics the
physical process by which a crystal is grown from a melt. Crystallization is related to
optimization, in that nonlinear inversion can be characterized as a transformation from

disorder (ignorance) to order (the solution).

The need for accurate nonlinear inversion in reflection seismology is demonstrated
most graphically in residual statics estimation. Broadly speaking, residual statics estima-
tion is the estimation of near-surface velocity anomalies. The problem is notoriously
difficult when the near-surface anomalies are severe, because recorded traces exhibit large
static (constant) timing delays that severely distort the image of subsurface geology.
Automatic estimation and removal of these timing delays depends on an algorithm’s
ability to accurately identify spatial correlations within the constraints imposed by the
design of a seismic experiment (i.e., the solution must be surface-consistent). I present
the estimation of these source- and receiver-consistent timing delays as a nonlinear
inverse problem. Poorly picked correlations (‘“cycle-skips” or “leg-jumps”) appear as
local minima, but global optimization by simulated annealing can be performed without

an initial estimate of the actual timing delays.

The paper begins with a review of the problems inherent in nonlinear inversion. It
1s emphasized that prior information plays an integral role in achieving any nonlinear
solution; here, I advocate using a statistical mechanical model. The relevance of statisti-
cal mechanics to this problem is supported with a discussion of spatial Markov processes.
Following Geman and Geman (1984), I incorporate these ideas into a general Bayesian
framework that leads to an expression for the posterior probability of the model parame-
ters. Solutions are then obtained by maximizing the posterior probability; this is per-
formed by a Monte Carlo optimization procedure, which I review in detail. I then refor-
mulate residual statics analysis as a nonmlinear, rather than linear, inverse problem. A
numerical example of residual statics estimation illustrates the features of a practical
implementation of simulated annealing. Finally, I discuss directions for future research

and indicate several further applications.
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THE NONLINEAR INVERSE PROBLEM

Consider a physical system (for example, the Earth) that is characterized by a finite
set of unknown model parameters X = {X, . . ., X, } in the s-dimensional parameter
space. An experiment performed in this physical system produces a finite set of data
D= {D, ...,D,} in the r-dimensional data space. X and D are (random) variables

that assume specific values x = {z,, . . . ,z,}ord = {d, .. ., d, }.

Let a set of r (nonlinear) functions G; be denoted by G. G is a function of the
model parameters x and describes the theoretical outcome of the experiment. The

observed data d is contaminated by additive noise and is represented as
d = Gx)+n , 1)

where n = {n,, ..., n,} is a realization of the random noise N, which is assumed to
be independent, identically distributed, and independent of X. It is assumed that only
discrete values are allowed when X, D, or N is the argument of a probability distribu-

tion. Extension to continuous random variables is straightforward.

Solving equation (1) for an x that represents the entire underlying set of model
parameters is the most ambitious of geophysical inverse problems. In a more realistic
approach, x represents a vector of parameters for a smaller problem in which many phy-
sical quantities are previously defined. Later, x will represent residual static timing

delays, and it will be assumed that stacking velocities are known.

Inversion of (1) is generally performed by optimization. We solve for

X = n;inf[d,G(x)] . (2)

In least squares formulations, f is typically the squared difference between G(x) and d.
Using G(x) implies that forward modeling is done; alternatively we can minimize a func-

tion that depends on G, the (approximate) inverse of G. In this case

x = min f [GY(d;x)] . (3)

X
G operates on d, but the precise form of G™' may depend on x.

Whether approach (2) or (3) is chosen, optimization remains a basic problem. In
many geophysical inverse problems the function f , whatever its form, is rife with local
minima. One might naively suggest that an exhaustive evaluation of all possible solu-
tions be made. Usually, however, there is a large number of model parameters, each of
which may assume some similarly large number (or a continuum) of values. Specifically,
if s parameters can each assume one of ¢ values, then there are ¢° possible solutions.

The utter enormity of this number definitely rules out the use of an exhaustive search.
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Despite this assumed complexity, equations (2) and (3) do not necessarily pose
intractable optimization problems. The key to their solution is prior information. For
example, conventional approaches to nonlinear inversion usually incorporate an initial
guess x° for x. The remaining perturbation Ax = x —x° is then assumed to approxi-

mately satisfy the linear relation

G(x) =~ G + FAx

J

where F is a matrix of partial derivatives 9G; / 0z; evaluated at x%. Then, letting

d’ = G(x°) + n and Ad = d - d° one solves for the Az that satisfies

FAx = Ad .

This yields a possible solution x!

= x4+ Az, which might or might not be satisfactory
for minimizing (2) or (3). If it is not, the procedure is iterated by replacing x°® with x!,
etc. Iterative techniques of this general form are widely used - reviews are contained in
Parker (1977), Aki and Richards (1980), and Lines and Treitel (1984). The basic
shortcoming of these techniques, however, is their reliance upon a good 1nitial guess,

without which they might fail severely.

What can be done, then, if there is no basis for an initial guess? Prior information,
in the form of Bayesian inference, may still light the way. If we can formulate a prior
probability distribution P(X==x), we may be able to assign low probabilities to much of
the parameter space, thereby effectively eliminating it. Later I will examine the prob-
lems encountered in residual statics estimation when statics are unusually large and no
initial estimates of the timing delays are available. By relating probability to the power

in a common midpoint stack, I will construct such an informative prior.

The prior distribution represents relative weights assigned for all possible x before
any data are collected. After the data are observed, standard statistical analysis is used
to combine the prior and the observed data to obtain the posterior probability distribu-
tion P(X==x | D=d) via Bayes’ theorem (Bard, 1974):

P(X—x|D—d) — P(D:déé::xd))P(sz) . @

Later we will want to find the x that maximizes the posterior probability - this step is

often called maximum a posteriori (MAP) estimation, and presents yet another optimiza-

tion problem.

One interesting generalized approach to the incorporation of prior information in
nonlinear inversion is described in the paper by Tarantola and Valette (1982). Although

their formalism is appealing, the generalized use of prior information alone will not
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necessarily make a problem computationally tractable. Nonlinear geophysical inversion
will often require more - specifically, a method that employs available knowledge to

obtain a computable solution.

GIBBS-MARKOV MODELS

Many large-scale problems in reflection seismology can be naturally subdivided to a
much smaller, computationally convenient scale. The surface-consistent analysis of
seismic data, for example, can be divided into related sub-units, the size of which depend
on the seismic cablelength (typically much less than the length of a seismic survey). The
analysis that follows attempts to unify estimates of parameters made in sub-units with
estimates that are consistent with the entire dataset. The statistical model I will use can
be described in either of two ways that have been shown to be formally equivalent. One
model is derived from probability theory and is called a Markov random field. The other
model is the Gibbs distribution of statistical physics. Our goal is to divide a large prob-
lem into smaller, more manageable parts while maintaining the relationships between the
smaller parts as precisely as possible. Ultimately we will want to solve a large-scale non-
linear inversion problem. The Gibbs-Markov model forms the foundation of this objec-

tive.

Markov random fields (Kindermann and Snell, 1980) describe the structure common
to the particular class of problems I address. A Markov random field is the spatial coun-
terpart of the one-dimensional Markov chain. The simplest form of a Markov chain is a
stationary sequence in which the conditional probability of an event at time ¢ depends
only on the value of the sequence at time ¢ — 1. Because the event at time ¢ is indepen-

dent of all times other than ¢ -1, we may write, for a random sequence

X-_— {Xo, Xl} ...,Xt },
P(thzt | Xia=24,..., onxo) = P(thxz | Xt—lzzt—l) .

A straightforward generalization leads to the consideration of a two-dimensionally
indexed set of random variables X = {X;; }. The X;; define a Markov random field if
the value of each X;; depends only on a neighborhood A oof (¢, 7). A;; might contain

only the nearest neighbors of z;:

Aij :{(i+1’j)’(i_1:].)7(ilj+1)7(i}j_1)}

Other, more complex neighborhood structures are possible (and are employed here). In
general, neighborhoods contain only those model parameters that most immediately
influence the values a given parameter may assume. A two-dimensional Markov random

field with an arbitrary neighborhood structure A;; is stated as
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Pl =zij | Xy=zu, (k,1)#(,5)] = PXyj=0;; | Xpy—zy, (k,1)EA;].  (5a)
It 1s also required that all possible parameter vectors have positive probability:
P(X=x) > 0 forall x . (5b)

Figure 1 shows an example of a Markov random field on a two-dimensional lattice.

FIG. 1. A schematic representation of a Markov random field with nearest-neighbor
interactions on a two-dimensional lattice. The probability distribution of the parameter

located at position * depends only on its nearest neighbors, the n’s; thus P( * | all else )
= P( * | neighbors ).

The notion of a Markov random field describes only the general form of local, con-
ditional probabilities. While useful in concept, these local conditional probabilities pro-
vide only indirect information on the behavior of the complete sct of parameters. More
direct information should be in the form of a joint probability distribution P(X=x).
This is fortunately available, because all Markov random fields exhibit a Gibbs probabil-
ity distribution, and all Gibbs distributions define a Markov random field (Geman and
Geman, 1984; Kindermann and Snell, 1980; Moussouris, 1974). Gibbs (or canonical) dis-

tributions arise in statistical physics in the study of systems in thermal equilibrium. X
is Gibbs if

LZ e : (6)
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E (x) is called the energy, and is the sum of local potentials b4, (x) such that
E(x) — - da,(x) - 7
i,J

The ¢A,-,- are evaluated over the same neighborhood structure A;; used to specify the
conditional probabilities (5a); i.e., ¢A,-J- depends only on zy, k,! €A;;. T is tempera-
ture and kg is Boltzmann’s constant. Z is the normalizing constant

—E!x!
Z =ye®t (8)

called the partition function.

The Gibbs-Markov equivalence lends physical significance to the purely probabilis-
tic concept of a Markov random field. If a problem can be divided into sub-units that
satisly equations (5), then physical insight gleaned from the statistical mechanics
expressed by equations (6), (7), and (8) is applicable to that problem. The key to intui-
tively connecting the physics with the statistics lies in the energy function (7). Here it is
evident why Gibbs distributions and Markov random fields are closely related: the same
neighborhoods A;; limit the spatial range of both the conditional probabilities (5a) and

the z;; needed to evaluate the local potentials ¢Au' Only the general form of the energy

function has been specified, however. Kirkpatrick et al. (1983) proposed an important
additional bridge between the physics and the statistics by letting the energy represent
an objective function in an optimization problem. In residual statics estimation, the
objective function will be the negative power in a common midpoint stack. The Gibbs
probability (6) then increases as stack power increases; T is expressed in the same units
as the objective function and acts as a control parameter akin to the variance in a Gaus-

sian distribution (but 7' has much physical significance).

The utility of the Gibbs representation will be evident shortly. Note now, however,
not only that a Jarge problem has been subdivided into smaller parts (Markov probabili-
ties), but also that the joint Gibbs distribution describes the presumed interactions of
these individual parts by supplying the prior probability of any given parameter vector.
Moreover, given the prior, we can now derive the posterior distribution and complete the

statistical statement of the problem.
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THE GIBBS POSTERIOR

Assuming that X is a Markov random field, we may write the joint prior probabil-

ity distribution for the model parameters as

-E(x

e T, (9)

where for convenience we set kg = 1. The choices of E and T are deferred until later
discussions of applications. Following Geman and Geman (1984), I now show that the
posterior probability P(X = x | D = d) is also a Gibbs distribution.

Starting with Bayes’ theorem [equation (4)], we substitute the Gibbs prior for
P (X=x) and take P(D == d) to be constant, to get

-Eix)
P(X=x|D=d):—}P(D=d|X=x)e T (10)

where Z is now a new constant. The noise N= {N, ..., N,} is assumed to be
independent, identically distributed, and independent of X. For analytic convenience

the probability distribution of the noise is assumed to be zero-mean with the form

_l[ lnll, ]P
P(N=n) — cl¢? 7 (11)
where ¢ and o are constants and || e ||, is the L? norm such that
r
(I n|],) =r'Ynf If p =2 the noise is Gaussian, and if p =1 the noise is

[

exponential.

We now solve for the posterior. Equation (10) is rewritten as

-E(x
P(X:xlDzd)z%P[DzG(x)+n|X=x]e 7 (12)
-F(x
:%P[N:d—G(x)|X=x]e T . (13)
Because N is independent of X,
-E(x
P(sz[D:d):—}-P[de—G(x)]e T (14)
and by substituting from equation (11),
-E(x) 1[ [In ], ]”
1 T T2 o
P(szlD:d):76 (15)
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where 7 is again a new normalizing constant. By writing the exponent as

E' (x,d) — E(;) n _;_ ||d_i(x)||p (16)

we see that the posterior distribution is also Gibbs with energy function E' (x,d):

-E' (x d)
P(szlDzd)z%e r (17)

Note that the form of the Gibbs posterior is unaffected by the value of p; thus the noise

need not be Gaussian.

Geman and Geman (1984) derive some additional results showing that the posterior
neighborhood structure is slightly modified to include ‘“second-order’ neighbors (ie.,
neighbors of neighbors). For computational purposes, however, I assume that the prior

and posterior neighborhood structures can be taken equal.

The model parameters that best fit the data, from the viewpoint of Bayesian infer-
ence, are determined by maximizing the posterior probability (17). This is mazimum a
posteriori (MAP) estimation. Maximizing this posterior probability by conventional gra-
dient techniques is often not possible for nonlinear problems because of the existence of
many local extrema. We will next see that the method of simulated annealing can, how-
ever, perform global optimization because it is based on the statistical mechanics of

equation (17).

SIMULATED ANNEALING

Kirkpatrick et al. (1983) introduced simulated annealing in an attempt to solve
apparently intractable optimization problems. Simulated annealing is a Monte Carlo
optimization procedure based on chemical annealing. Annealing is the way in which cry-
stals are grown - a melt is cooled very slowly until a crystal is formed. The rate of cool-
ing is important, because a non-crystalline, metastable glass can form if cooling is too
rapid. Kirkpatrick et al. viewed the growth of a crystal as analogous to finding the glo-
bal minimum in optimization, and the development of a glass as the analog to wrongly
selecting a local minimum. Their primary application was directed at the combinatorial
optimization problems that arise in the physical design of computers. Other researchers
are now using simulated annealing in image restoration (Geman and Geman, 1984),

artificial intelligence (Hinton and Sejnowski, 1983), and elsewhere.

The method proposed by Kirkpatrick et al. is a variant of a Monte Carlo integra-
tion procedure due to Metropolis et al. (1953). Metropolis et al. addressed the problem
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of random sampling from a Gibbs distribution at constant temperature, thereby simulat-
ing the average behavior of a physical system in thermal equilibrium. The Metropolis
algorithm proceeds in the following way. For each model parameter (or magnetic spin,
molecular position, etc.) X;;, a random perturbation is made, and the change in energy,
AE, is computed. If AE < 0 (i.e., if energy decreases), the perturbation is accepted. If
AE is positive then the perturbation is accepted with probability

-AF

P(AE) = ¢ T . (18)
This conditional acceptance is easily implemented by choosing a random number o uni-
formly distributed between 0 and 1. If o < P(AE) then the perturbation is accepted;
otherwise the existing value for the parameter is retained. Random perturbation accord-
ing to these rules eventually causes the system to reach equilibrium, in which
configurations x are realized with a Gibbs probability distribution. Because each step of
the algorithm is dependent only on the present and not the past, the algorithm can be
formally studied using Markov chain theory - see Fosdick (1963), Hammersley and
Handscomb (1964), and Binder (1979, 1984) for reviews.

Kirkpatrick’s optimization technique slowly lowers the temperature T during exe-
cution of the Metropolis algorithm. If the system is cooled sufficiently slowly and equili-
brium conditions are maintained, the model parameters eventually converge to a
(ground) state of minimum energy (or maximum probability). See Geman and Geman
(1984) for a convergence proof. The essential characteristic of this optimization pro-
cedure is its ability to escape from local minima and locate the global minimum with a
high degree of accuracy. Thus, in the Bayesian formulation here, perturbations that
lower probability are accepted in accordance with equation (18), but the final result
yields the model associated with mazimum probability. When simulated annealing is
employed to estimate residual static corrections, the algorithm will accept not only ran-
dom guesses of residual statics that lead to increased stack power, but also some random

guesses that decrease power. The final result will yield the stack with maximum power.

RESIDUAL STATICS ESTIMATION

When reflection seismic data are acquired on land, sources and receivers are gen-
erally placed on or near the surface. Eventual processing and interpretation of seismic
data assumes that the data were collected on level terrain. If this is not the case, rough
corrections for variations in elevation are made early in processing. These constant
(static) time shifts are called field statics because the corrections are based on a

surveyor’s field measurements. Field static corrections are only approximate; the

SEP-41



308 Rothman

unconsolidated near-surface weathering layer can exhibit substantial variations in seismic
velocity that also cause static timing differences. This latter problem can exist even
when surface terrain is flat. These secondary corrections are derived from the data after

field statics have been corrected and are called residual statics.

The conventional model for obtaining residual statics solutions (Wiggins et al.,
1976; Taner et al., 1974) expresses the observed static time deviations t;; of normal

moveout corrected traces associated with the 7 th shot and jth receiver as
2
tij = & + Tj + gk + my CII,']' . (lg)

The unknown surface-consistent time shifts due to near-surface velocity anomalies
underneath the ¢th shot and jth receiver are denoted by s; and r;, respectively. The
unknown subsurface-consistent part of the time shift due to variations in geologic struc-
ture at the k th midpoint is given by g,. The last term represents the component that is
due to residual normal moveout: my is the residual normal moveout coefficient, and Tij
1s the distance between shot 7 and receiver j. The m; are included in an attempt to

account for the usually imperfect stacking velocities used prior to measuring t;; .

The validity of the linear model (19) rests on two important assumptions: (1) waves
travel through the near-surface with approximately vertical raypaths, and (2) the
observed deviations t;; are reasonably accurate. The first assumption is definitional; if
near-surface raypaths were not vertical, “statics” would be “dynamics”. The second

assumption deserves further attention.

Each t;; is usually measured by crosscorrelating an unstacked data trace against a,
“reference” or “pilot” trace, and then equating t;; to the lag that yields the greatest
value in the crosscorrelation function. This is an appropriate technique if the reference
trace is reasonably similar to the data trace, but gross, irrecoverable errors can occur if
the traces are sufficiently dissimilar (due either to excessive noise, large statics, or both).
Equation (19) represents a large system of overdetermined and underconstrained linear
equations (Wiggins et al., 1976) that are generally solved by least squares techniques.
Least squares solutions are optimal if the errors between the observed t;; and the “true”
t;j are Gaussian. If a small number of errors are non-Gaussian, robust estimation
methods may still produce an effective least squares solution (Donoho, 1979). If the stat-
ics are sufficiently large and the data are sufficiently poor to cause a large number of
gross errors in {;;, the least squares method will fail - this is the “cycle-skipping” or

“leg-jumping” problem. A nonlinear approach is then needed.

Let the data recorded at the jth receiver, after the i th shot has been fired at time

t =0, be denoted by d;; (¢). Let f;;(t) be the same data but without noise n;;(t) and
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without static shifts. Then
dij(t) = Gij(si,r;) fii(¢) + my;(t) (20)
where
Gij(siory) [ij(¢) = fij(t —s5 —15) . (21)
We want to estimate the s; and the r; directly from the seismic data.

Although each Gj; is a simple linear operator, the recovery of the s; and r; can
not be linear unless additional important assumptions are made. One such assumption
is made in equation (19). The t;; play the role of an initial guess: they are initial esti-
mates of timing delays that are then decomposed into surface- and subsurface-consistent
components. This decomposition is usually performed with a linear least squares tech-
nique. This linearization fails, however, when the t;; contain gross errors due to large

statics and noise-contaminated data.

I now cast the nonlinear statics problem of equation (20) in the form of a Gibbs-
Markov model, in order to obtain a general solution that is valid for any severity of stat-
ics and noise. Seismic traces are first sorted to midpoint-offset (y—h ) coordinates and
normal moveout corrected (with approximate velocities) to produce the new set of data
dyy (t). It is assumed that each common midpoint gather contains traces that are identi-
cal except for surface-consistent time shifts and uncorrelated noise. The best estimate of
shot and receiver statics will thus be those static shifts that maximize the total power in
all common midpoint stacks. To express this formally, define the inverse of the shifting

operator in midpoint-offset coordinates,

Gl dy (1) = dy (8 + 570 4+ Ti(w.h)) » (22)
where 7 and j are both functions of y and h. The objective I have selected is to
minimize the negative of the total stack power as a function of the shot statics s and
receiver statics r; thus

=g (33

NGt dy (¢) ] | (23)
h

where 8 and r determine the inverse operators Gy;1 and the sums are taken over all y, ¢
(within some time gate), and k. This is an optimization problem of the general form
shown in equation (3). To make global optimization tractable when many local minima

exist, the problem is divided into the interdependent parts of a Gibbs-Markov model.

Seismic cables are usually short relative to the length of a survey; consequently,

each shot static s; influences (in an immediate sense) the stack power of only a subset
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Y,, of all midpoints y. Likewise each receiver static (immediately) affects only a subset

Y, . To measure the contribution to stack power due to s; we compute
J

2
¢, (s,7) = ¥ 3 [E dy (¢ +3i(y,h)+7‘j(y,h))] ’ (24a)
ers' ¢ h
where s;, k£ 1, and all r; are fixed. Similarly,
2
¢, (5,7) = 3 X [Z dyh(t+8i(y,h)+fj(y,h))] ) (24b)
yey, h
J

where now r, k #7, and all s; are fixed. The minimization problem in equation (23) is

now replaced by

[s,r] = min E (s,r) (25a)

[sr]

where
Es,x) = - 54, (5,7) - 0o, (s,7) (25b)

In this formulation, the total stack power E plays the role of the energy in equation
(17). Maximizing stack power is then equivalent to maximizing the posterior probability
(17). Because the seismic cable is shorter than the survey line, £ can be partitioned into
the additive “local energies” ¢, and ¢r," each of which depends only on the s; and r;
located within a cablelength. The cablelength determines the ‘“nearest neighbors” in the

sense of a Gibbs-Markov model; see Figure 2.

The subsurface-consistent terms g; and m; are not included in this approach. The
gr represent timing differences due to geologic variation from midpoint to midpoint, and
are useful only with models like equation (19) whose solutions depend on measurements
of trace-to-trace time deviations. However, the power computations in (24a,b) are per-
formed within midpoint gathers, where the g, are constant and therefore irrelevant.
This is an important point. The statics solution presented here does not need to decom-
pose structural and near-surface variations. Long wavelength statics, however, are still
poorly resolved by the data and are generally suspect [see Wiggins et al. (1976) for more
details]. Residual normal moveout, although ignored, is still an important parameter.
Unfortunately, estimating the m; with an objective function like (24) is cumbersome. It
is of course possible, but my experience has shown that it would not merit the additional

computational burden.
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FIG. 2. Schematic representation of a seismic survey conducted with a 6-trace cable. s,
y, r, and & denote the shot, midpoint, receiver, and offset axes, respectively. Each dot
represents a single seismic trace (the time axis may be taken to go into the page). Each
trace is uniquely specified by any 2 of the 4 coordinate axes. In this picture, all traces
recorded at receiver location r, are connected by a vertical line. Calculation of qﬁ,*

requires summing over the h-axis for all midpoint gathers containing a trace recorded at
location r,; this sum over h is depicted by the diagonal lines perpendicular to the Y-
axis. This calculation of stack power depends only on the shot statics and receiver stat-
lcs located on the s- and r-axes at the positions marked by a dash. These are the
“nearest neighbors” in the sense used in a Gibbs-Markov model.

IMPLEMENTATION

Simulated annealing is an iterative technique that continually creates samples from
a Gibbs distribution while slowly decreasing the temperature parameter T (to exag-
gerate the peaks and troughs of the probability distribution). To help one choose the
initial temperature Ty, it is often useful to compare the input stack power p, with the
stack power p,, which is computed after applying random shot and receiver statics. For
a given B between 0 and 1, T can then be chosen such that

Po— Py
T,

B = e
B determines the degree of “melting” prior to “annealing,” and represents the probabil-

ity of the algorithm accepting a decrease in power by the amount po— pr- Cooling can

then proceed in any of a number of ways. My best results were attained with a
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logarithmic cooling function of the form T} = Tg/log k, where k is the number of
iterations over each shot and receiver static. (One iteration includes one attempted per-
turbation of each shot and receiver static.) Geman and Geman (1984) proved that the
algorithm converges when this logarithmic function is used. Practically, the most crucial
requirement of any cooling function is that it be slow, especially near the “critical tem-
perature” where convergence is rapid. Choosing a successful annealing schedule requires
experience; ideally, the procedure would be interactive. I was usually able to produce a
successful result after a few trials. I find it best to set 8 close to 1 for an initial explora-
tory Tun with T, = T,af, with o equal to, say, .99. Then, after roughly determining
the critical temperature, the more gentle logarithmic function may be used. My results
thus far suggest that many iterations at a single temperature may suffice, if the tempera-

ture is chosen just below the critical temperature.

Once started, the next question to resolve is when to stop. In my tests I collected
run statistics every 10 iterations. The algorithm simply stops if 10 iterations have

passed in which few or no perturbations are accepted.

Hinton and Sejnowski (1983), Geman and Geman (1984), and others point out that
simulated annealing can be implemented in parallel. Parallel computers are collections
of processors that operate simultaneously while maintaining a continuous flow of infor-
mation from each processor to its “neighbors.” [See Hockney and Jesshope (1981) for a
survey.] In theory, if there were N processors (say, one for each parameter), run time
could be reduced by a factor of N. In certain cases, however, the Metropolis algorithm

has only half this expected parallelism (Vichniac, 1984).

NUMERICAL EXAMPLE

Residual statics estimation by simulated annealing was tested on synthetic data
that exhibit a severe surface-consistent statics problem. The data simulate the results of
a survey conducted with a 12-trace cable, off-end shooting with a two receiver group
gap, and evenly spaced shots and receiver groups. There are 100 6-fold common mid-
point gathers. The sampling rate is 4 msec. and the data contain frequencies from 5-60
Hz. The data, prior to the introduction of static shifts, are shown in Figures 3a and 3b.
Figure 3a shows four representative “moveout-corrected” common midpoint gathers, and
Figure 3b is the common midpoint stack. The cablelength extends over 24 stacked
traces. The signal-to-noise ratio (the total power of the signal divided by the total
power of the noise) after stack is approximately 2.0. The entire dataset is scaled to an
rms amplitude of 100. For all traces the signal is identical, except for the bulk time shift

simulating a fault. (Real faults would not exhibit such a severe discontinuity before
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migration.) These data represent the desired solution for the test illustrated in the fol-

lowing figures.

Random shot and receiver statics are displayed in Figure 4. These statics vary
between 440 msec., in 4 msec. increments. Figure 5a shows the same common midpoint
gathers of Figure 3a, but now with the traces shifted in accordance with the statics
model in Figure 4. Figure 5b is the common midpoint stack after the model statics were
applied. Because of the severity of the statics, almost no indications of reflection events
can now be observed. The data in Figures 5a,b are the input to the statics estimation

algorithm.

Figures 6a-e illustrate the results of applying the statics algorithm. Random
guesses for shot and receiver statics were constrained to fall within +40 msec., in 4 msec.
increments. Three stages of the algorithm’s execution are depicted: the stack after 2410
iterations (6a); after 3080 iterations (6b); and the final solution, after 4540 iterations (6¢),
which closely resembles the desired solution in Figure 3b. Figure 6d shows the four com-
mon midpoint gathers from Figure 5b; the statics solution has now been applied to
them. For this example, T} = Tylogk, / log(kq + 2k ), with Ty = 4500, k, = 5000,
and £ equal to the number of iterations. This is a mild annealing schedule: T changes
by less than 11% from start to finish. Figure 6e is a graph of stack power versus itera-
tion. Note that there is very little change in power until after approximately 2300 itera-
tions. After 3000 iterations, the power sharply increases. This type of sudden change is
analogous to rapid crystallization, and was observable in the results of most tests. By
the time iteration 3080 was reached, the statics algorithm completed its most important
work: solving for the shorter-wavelength statics, leaving only long-wavelength residuals.
The longer wavelengths are the most poorly resolved components of the solution; this is
as true for the linearized technique of Wiggins et al. (1976) as it is here. By iteration
4540 (the final solution), only a slight long-wavelength residual remains. Although we
observe here, as elsewhere, the fundamental ambiguity of long wavelength statics and
structure, it is important to note that the severe structural discontinuity implied by the

artificial fault does not influence the solution.

The quality of the solution is measured by the objective function, stack power. For
comparison with results, the power of the input stack in Figure 5b is normalized to 1.
The final stack power for the solution in Figure 6¢c is 3.354. The known, desired solution
has a stack power of 3.399, so the computed solution is in error by approximately 1.3%.
The difference between the estimated statics and the true statics is graphed in Figure 7.
Note that, for both shots and receivers, the basic error occurs as a slight kink about

two-thirds along the line. The noise contamination for this test was strong enough so
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FIG. 3a. Four “moveout-corrected” common midpoint gathers. The gathers are shown
without static shifts; there are 6 offsets in each gather. This correct alignment of traces
is the desired solution for pre-stack data.
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FIG. 3b. Common midpoint stack prior to the introduction of static shifts. The
cablelength extends over 24 midpoints; there are 100 midpoints in total. The signal-to-
noise ratio is approximately 2. This is the desired solution for stacked data.
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FIG. 4. Random shot statics (above) and receiver statics used to generate the test data
in Figures 5a,b. Statics range between +40 msec., in 4 msec. increments, for both shots

and recelvers.
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FIG. 5a. The common midpoint gathers of Figure 5a after the application of the static
shifts in Figure 4. Note how the application of the statics has degraded the appearance

of the data.
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FIG. 6b. Common midpoint stack after 3080 iterations. Although long wavelength stat-
ics remain to be resolved, the bulk of the algorithm’s work is completed. Note that,
despite the ambiguity between structure and long wavelength statics, the artificial fault

at trace 50 is properly resolved.
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FIG. 6c. Common midpoint stack after 4540 iterations. This is the final solution, and
should be compared with the input (Figure 5b) and the known, desired solution (Figure
3b). The 8 msec. rise on the right half of the section is a result of poorly resolved long-
wavelength statics, due mostly to the noise contamination in the data.
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FIG. 6d. Common midpoint gathers after the statics solution has been applied. This
should be compared to the input (Figure 5a) and the desired solution (Figure 3a). CMP
60 exhibits a slight error due to the poorly resolved long wavelength. The time axis is
shorter now because the application of statics creates zeroes at early and late times.
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FIG. 6e. Stack power versus iteration number for the test leading to the result in Figure
6c. Stack power is computed every 10 iterations; the input stack power is normalized to
1. The final solution yields a stack power of 3.354, which is short of the true solution by
1.3%. Note the sudden increase in power after 3000 iterations. This abrupt change is
analogous to rapid crystallization. Temperature decreases by less than 11% between the
first and last iteration.
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FIG. 7. Difference between the estimated statics and the true statics for the result in
Figure 6¢c. The 8 msec. rise in the right half of Figure 6¢ is the result of the constant 4
msec. error for approximately the last 20 shot and receiver statics. The allowable values
for statics fell within +40 msec., in 4 msec. (1 sample) increments. The noise contamina-
tion for this test was too strong for the long-wavelength residual to be resolved.
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FIG. 8. The best result of 100 trials of residual statics estimation, made by iteratively
choosing the best value for each shot and receiver static until a (local) power maximum
1s attained. Each trial was performed with a different random initialization of the shot
and receiver statics. The stack power here is 29% short of the stack power of the
annealing result in Figure 6c. The diagonal appearance of the stack is due to a severe
cycle-skipping problem.
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that this long wavelength residual could not be resolved; other tests (not shown) with

higher signal-to-noise ratios more successfully resolved the long wavelengths.

The opposite of annealing is “quenching”; i.e., setting T = 0, so that only random
perturbations that increase power are accepted. Efficient quenching can be accomplished
by iteratively scanning all possible values for each shot and receiver static, and always
choosing the shift that yields the greatest local stack power. This is optimization by
iterative improvement (Lin, 1975; Kirkpatrick et al., 1983). Because iterative improve-
ment always finds the nearest local minimum, it is customary to perform several runs
with different starting positions (i.e., different initial values for s and r) and to save the
best result. I ran 100 such tests of iterative improvement on the statics test data; the
best of these 100 results is shown in Figure 8. The stack power for this solution is 2.378,
which is almost 30% less than the result obtained by simulating annealing. (The worst
of the 100 trials was short by almost 50%.) The diagonal appearance of this result is due
to a severe cycle-skipping problem, and is the visual manifestation of convergence to a
local minimum. These 100 runs consumed 4-5 times the computing time needed to
obtain the annealing result of Figure 6¢c. Although iterative improvement is not an
appropriate method to use when a statics problem is as severe as the one illustrated
here, it is nonetheless a powerful technique for performing statics estimation when stat-

ics are sufficiently small enough so that there are few local minima (Ronen, 1984).

FUTURE APPLICATIONS

Several further applications of simulated annealing in reflection seismology are con-

ceptually straightforward. I mention just a few; none have yet been implemented.

The residual statics algorithm can be easily extended to the estimation of
frequency-dependent statics. The statics model discussed thus far uses simple linear
phase shifts. In a frequency-dependent model, however, phase shifts can be a more gen-

eral function of frequency.

The problem of frequency-dependent statics is difficult to solve with models similar
to (19), because phase shifts greater than | #| are computationally ambiguous (Sword,
1983). Some form of phase unwrapping (Tribolet, 1979) is usually thought to be neces-
sary. In principle, adaptation of the present statics algorithm is straightforward and
requires only the application of two elementary theorems from Fourier transform theory
(Bracewell, 1978). The Rayleigh-Parseval theorem states that power in the time domain

equals power in the frequency domain. So for a function f (¢) and its Fourier transform

F (w)l
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In addition, the shift theorem states that the Fourier analog of a time shift is multiplica-

tion by a complex exponential:
f(t-7 D e F(w) .

Then by letting the Fourier transform of dy (¢) be denoted by D, (w), we may include
frequency dependence in equation (24a) by writing

2

b Is) x(@)] = B B |5 Moo bip ) L (2
' ers' w h
Similar changes can be made to equation (24b). Note that the s; and r; are now func-

tions of w.

Residual statics algorithms find only relative time shifts; the longest spatial
wavelength (the d.c. component) is fully unresolved by the data. This problem of resolu-
tion will be exacerbated in the frequency-dependent case if each w-component is treated
independently of the others. A physical model of frequency-dependent phase shifts
should therefore require that the phase shifts be locally correlated with each other. This
may be incorporated into equation (26) by smoothing s(w) and r(w) over w. Represent-
ing these smoothed functions by §{w) and T(w), the energy function for frequency-

dependent statics is

E5w), )] = - 4., [{e), Fe)] - 2¢, [5w), ()

Velocity inversion can also be viewed as an extension of the residual statics algo-
rithm. Statics are essentially the components of a one-dimensional velocity function. In
velocity inversion, a two-dimensional grid would be parameterized by velocity, and we
would seek the velocity distribution yielding the maximum stack power. Toldi (1984)
and Loinger (1983) present techniques in which perturbations to a velocity model are
linearly related to initial estimates of interval velocity. Optimization by simulated
annealing would be valuable if this assumption of linearity were not valid (i.e., if the
necessary perturbations were too large). However, this nonlinear approach might be
computationally unacceptable, because each perturbation and power calculation might

require far more effort than the simple shifts and sums needed in residual statics.

Deconvolution techniques that are designed to optimize an objective function such
as ‘“‘spikiness” or ‘“‘simplicity” usually require some form of nonlinear optimization.

Examples of these approaches to deconvolution include minimum entropy deconvolution

SEP-41



322 Rothman

(Wiggins, 1978) and its various generalizations (Donoho, 1981). Usually, iterative des-
cent from an initial guess is employed to estimate the coefficients of the deconvolution
filter. However, if local minima are a problem, simulated annealing could be a valuable
alternative. Here, the model parameters would be the filter coefficients and the “neigh-

borhoods” would encompass the entire filter.

REMAINING ISSUES

Several important questions remain to be answered. The notion of a critical tem-
perature is perhaps the most important, and the least understood. In physics, a critical
temperature can be the temperature at which a liquid changes to a solid, or the tempera-
ture at which a ferromagnetic substance acquires permanent magnetization. These
examples of the spontaneous ordering of matter are called phase transitions and have
been the object of extensive study [see, for example, Stanley (1971)]. For the nonlinear
inverse problems discussed here, the critical temperature may be broadly defined to be
the largest value of 7' that leads to significant (non-local) correlations between parame-
ters. Convergence is possible only below this temperature. The critical temperature is
presently estimated empirically. An analytic approximation remains an open research

problem.

In the original formulation of Metropolis et al. (1953), the Monte Carlo algorithm

was used to estimate the ergodic averages

—E!x!
Yix)e
<TE> = NI0PX=x) = e — (27)

Ne

X

for a given T = T;. These averages are valid only if the system has reached equuli-
brium, which means that the Monte Carlo algorithm has performed enough iterations so
that the x are generated with a Gibbs probability. Ideally, T would be lowered in simu-
lated annealing only if equilibrium has been attained. Equilibrium is theoretically
defined in terms of the equilibrium distributions of Markov chains (Hammersley and
Handscomb, 1964; Fosdick, 1963), but it is notoriously difficult to quantify in empirical
studies (Binder, 1979; Binder, 1984). If one is certain that equilibrium has been attained,
however, then the generation of the ergodic averages (27) can be useful for estimating
means, variances, covariances, etc. One can also estimate the posterior probability dis-
tribution by constructing a histogram of the output of each iteration for constant tem-

perature. Thus one can obtain not only a simple answer (the maximum a posteriori
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solution) but also estimates of resolution and accuracy. The posterior probability distri-
bution is arguably the most fundamental information that can be provided by a solution

to an inverse problem (Tarantola and Valette, 1982).

Ultimately, the question of computational efficiency must be addressed. My current
implementation is slow (the example in Figures 6a-c required 4 hours of CPU time on a
DEC VAX 11-780). The results are encouraging, however, because this particular statics
problem appears to be unsolvable by existing techniques. The heat bath method (Rebbi,
1984; Creutz, 1980), an adaptation of the Metropolis algorithm, is currently being inves-
tigated for possible computational gains. The most significant gains in computational

speed might await the eventual development of new parallel computing architecture.

CONCLUSIONS

Conventional techniques for solving nonlinear inverse problems rely on initial
guesses of model parameters and subsequent linearization. These techniques perform
well if initial estimates contain sufficiently small errors, but they can otherwise fail

severely.

The Gibbs-Markov model provides guidelines for the reduction of a large nonlinear
inverse problem into small, interdependent, and computationally manageable subprob-
lems. This formulation does not depend on a good initial guess, and leads naturally to

global optimization by simulated annealing.

Residual statics estimation should be formulated as a nonlinear inverse problem
when statics are large and data are contaminated by noise. The benefit of a nonlinear
formulation is substantial: no initial estimates of timing delays are needed. Although
poorly picked spatial correlations (“cycle-skips”) appear as local minima, global optimi-
zation can be successfully performed by simulated annealing. Large statics can consider-
ably alter the appearance of seismic data. Although the estimation of statics by simu-
lated annealing is computationally expensive, the benefits gained by its more accurate

solution may far outweigh the additional cost.

Efforts toward an application to field data are currently underway and will be
reported shortly. Both the broad applicability of the technique and its encouraging early

results bode a promising future for this new approach to nonlinear inversion.
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Are you ready to enter Moscow State University?

Moscow State University is the most prestigious university in the USSR. Entrance is
(officially, at least) by competitive written and oral examinations.

Candidates wishing to study geophysics are expected to take the following examinations:
mathematics (written and oral), physics (oral), and Russian language and literature (written).
Each written examination lasts four hours.

Below is a sample mathematics written exam for applicants who would like to be admitted
as undergraduates in geophysics. You have four hours. Ready? Go!

Geophysics exam

1. Find all real solutions of the equation

(z+ 1)V162 + 17 = (z + 1)(8z - 23).

2. In the triangle ABC, angle BAC is a right angle, and the lengths of the sides AB and BC
are 1 and 2, respectively. The bisector of angle ABC intersects the side AC at point L ,
while point @ is point where the medians of triangle ABC intersect. Which is larger: the
length of BL or the length of BQ ?

3. Solve the inequality
log  ,(z%3z+2) > 2
sin—

3
4, Find all pairs of real numbers z and y, which satisfy the system of equations
3sin3z+cosy = —4,
Tty = 3m
y 5
5. A boat travels along a river whose current flows at 5 km/hr (kilometers per hour). Accord-

Ing to its schedule, on a trip from A to D it covers a distance of 15 km in 1 hour. More
specifically, leaving point A at 12:00, it is scheduled along the way to stop at points B and
C, located at distances 11 km and 13 km respectively from point A , at 12:20 and 12:40. Tt
1s known that if the boat were to go from point A to point D without stopping, at a con-
stant velocity v (relative to the water), then the sum of the absolute values of the deviation
from the scheduled arrivals at points B, C', and D would not exceed the time, reduced by
half an hour, that the boat would need to travel 5 km at velocity v in still water. Which of
the points, A or D, is located upstream?

6. The base of pyramid SABC is composed of isoceles triangle ABC , which has sides AB and
AC of length 1, while the cosine of angle BAC equals % Edge SA is perpendicular to

edges AB and AC, and angle BAC is twice as large as angle BSC. Inside the pyramid is a
right circular cylinder whose generatrix is parallel to BC'. What is the maximum possible
surface area of the sides (not including the bases) of such a cylinder?

Answers in the next SEP report
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