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Robust inversion of VSP’s
Bill Harlan

INTRODUCTION

A previous paper (Harlan and Lailly, 1984) outlined a general method for the inver-
sion of non-linear differential systems with an application to vertical seismic profiles
(VSP’s). That paper described all general strategies and statistical tools I shall require
here. I turn to more mechanical difficulties now in hope of better illustrating the

method’s application to a given differential system.

Classical optimal control theory offers such powerful generality that I have given
the first section of this paper to its elaboration. One is able to incorporate boundary

conditions and stability criteria, yet treat a differential system in its continuous form.

Secondly I more explicitly describe my modifications of classical control as applied
to VSP’s -- where and how robustness should be added.

OPTIMAL CONTROL OF VSP’S

I review here a general method for the inversion of systems governed by partial
differential equations. The mathematical techniques are due to Lyons (1968). The exam-

ple of 1D inversion of seismic waves derives from Bamberger, Chavent, and Lailly (1982).

The differential system

The following differential system will determine the 1D propagation of acoustic

waves.
0‘8_2'1/ _ i 0-_8.__ = 0 (1)
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y(2,t) is the time derivative of the vertical displacement measured at time ¢ and

pseudo-depth x:

dz
p(2)

(4)

v
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z is the depth measured by the travel-time from the surface (Mace and Lailly, 1984).
o(z) = v, (z)p(z) is the impedance. g¢(t) is the time derivative of the vertical traction

(force per unit area) at the surface.

All functions will be invariant over the other two spatial dimensions. Assume data
are recorded at a set of depth points {z; } for 0 < t < T. These depths may be irregu-
lar and quite sparse. Positions of zero time and of zero depth are arbitrary for inversion.
Assume that the first geophone is slightly below zero depth and invert for an appropri-

ately shifted source function.

Let us invert for g(t) over 0 < ¢t < T and for a(z) over 0 < z < X where
X = 2pax + (T - 74)/2. X represents the maximum depth from which a reflection
can be made in the given time span. One may safely assume that the wavefield is zero
at deeper points without affecting the inversion of the earth above. Impedance may be
varied at this depth without affecting the modeled data. Thus we obtain another boun-

dary condition:

yl:c:X:O (5)

The variational form

One may express equations (1), (2), and (4) as a single variational equation. Write
(1) as

TX
{{{ at2 %[0%1‘1} dr dt =0 for all ¢(z,t) (6)

Integrate once by parts and incorporate boundary conditions (2) and (4).

T

ff{ g +o Zl%}dxdt=£qutlz=o (7

Equation (7) contains all information in the original three equations.
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Choosing a cost function

Now we wish to define the o(z) and g (¢) that best model the data. One should
minimize the resulting error (noise) of the modeled data. For stability we want to

minimize the norms of the inverted signal spaces.

T
J=27 Nl -yE O d + 25 % g¥e) + 5 0P ©)

Cn2 ze{z;}0 g te{t} 002 xe{x;

{t;} and {x;} represent the sets of points at which g(t) and o(z) are to be inverted,
and {z; } the depths at which d(z,t) is measured. The C’s represent variances. Even

sampling of signal parameters is not necessary.

Minimization
A perturbation of y will create a corresponding perturbation of the cost function.

From (8) we obtain

T
87 = =L %1 [ld  yl6y de (9)
C, ze{z;} 0

d -y is merely the error of the fit, or noise. Equation (9) allows us to find the relation-

ship between perturbations in y and perturbations in ¢ and ¢ .

TX T

d? dy 9
{{[a—tlgq + -a—za—;l]aa de dt —{thg dt | ,_o (10)

~ o? 9 3
= _ s 5yl ZL\ 4y 4t
H{aqaﬂ v +log; y]ax} z

o % d . 0q
= —{{{aw - E[aa]}éy dr dt
Again we have integrated by parts. All unperturbed functions remain at reference values.
Boundary condition (3) has destroyed two boundary terms. Suppress remaining boun-
dary terms now and require appropriate boundary conditions in the following applica-

tion.

Now for the cleverness. Choose a particular value of g such that the right-hand
side of equation (10) equals the right-hand side of (9). Equations (9) and (10) will then
yield the gradients 6J /éc(x) and 6J /8¢ (¢ ) for this chosen ¢ and the reference field Y.

T
o%y dy dq 1 do
J dt £Lae
Vo {[ath + So Lt + ERT (11)
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VgJ:"qlx:O-i_'— (12)

To determine the proper ¢ eliminate 6y from the forced equality of (9) and (10).

82q 0 0q 1
—l - || = d —ylélz - xz; 13
ool o5t = G Mld - yle =) (13)

0
0lir =201, = (1)

d J
a—Z|z=o=a—Z|z=x=0 (15)

The above system is properly called the adjoint of our first differential system (1), (2),
and (3). Boundary conditions (14) and (15) result from the suppressed boundary terms
in equation (10). Condition (15) holds because of the assumption that we do not have a
geophone at the surface nor at the depth too far to be reached by waves with ¢ < T .
Non-zero values may be introduced for such terms with a less convenient geometry. Our

eliminations, however, do not restrict the application to VSP’s.

Final steps

With the gradients (11) and (12) in our hands, the procedure for inverting as a clas-
sical control problem becomes quite comfortable. At any given iteration we will have
estimates of ¢ and ¢ and a corresponding estimated wavefield. Subtraction of this
wavefield from the data provides a perturbation of the system 8y, to be accounted for
by appropriate perturbations éo and g. A steepest-descent or Fletcher-Reeves algo-
rithm would perform a line search in order to find the appropriate scale factor. The

reference parameters should be perturbed, and a new 8y calculated.

MODIFICATIONS OF OPTIMAL CONTROL FOR THE VSP

Here I discuss principle modifications of the classical method of optimal control
described above. Again, I refer readers to the paper of Harlan and Lailly (1984) for
explanation of the statistical tools used below. I shall include their functions and

justifications, but omit algorithmic details involving manipulation of histograms.

Simplifying inverted impedances

In spite of its small dimensionality, the impedance function carries an important
null space. One may completely obscure the inverted impedances with components that

do not affect the modeled result. The difficulty lies in properly controlling the a priori
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impedance statistics.

The first derivative with depth of an impedance log creates an array whose samples
have negligible statistical dependence. That is, a single impedance transition tells noth-
ing to an interpreter about the location or magnitude of other transitions. However,
since the earth is made of largely homogeneous packages, transitions are few: a majority
will be zero. Also, few interpreters would care to prejudice their inversions with a prior:
predictions about the overall distribution of transitions with depth. To summarize in
statistical terms, I say that the samples of a differentiated impedance log should be an

independent, identically distributed (IID), non-gaussian random process.

The least-squares (1.s.) constraint given in the functional (8) properly treats the IID
property of do(z)/dz, but assumes that this function (when sampled) is gaussian. Real
impedance logs are strongly non-gaussian. As a result, an inversion with this functional
increases the a priori probability by exchanging sparse strong transitions for numerous

small transitions. The result is predictably gaussian but difficult to interpret.

Figure 1 contains a noiseless synthetic VSP prepared from an impulsive source g(t)
and the impedance log o(z) in Figure 2. I began with a zeroed source and constant
impedance. Three iterative perturbations of g (¢) and o(z ) with the least-squares func-
tional produced Figure 3 and the forward model and residuals of Figures 4 and 5. A low
clip of amplitudes emphasizes the character of the uninverted events. The inverted log
contains high-frequency events that largely obscure the important transitions. The loss

of low frequency information destroys the blocky character.

Alternatively I proceeded as outlined by Harlan and Lailly (1984). Iterative estima-
tion of the actual probability density function (pdf) for d a(z)/dz, followed by Bayesian
estimation and an extraction of the most reliable transitions yielded the impedance log
of Figure 6. (A recapitulation of the algorithm will end this paper.) The fit with the
data was no worse than that of the gaussian inversion, yet the first derivative of the log
is zero most everywhere. The most important transitions have been captured, and the

low frequency component is just.

The impossibility of linearizing the differential system

A temporary linearization of the system (1-3) with respect to background parame-
ters would offer the attractive possibility of iteratively inverting a linearized least-squares
system. However, a little testing shows that a non-zero impedance function o(z) as
reference makes the linearized system unstable. Thus, the appropriate scale factor for
perturbations must derive from a line search, or the expensive matrix inversion of

Newton’s method. I facilitate the line search by finding the appropriate scale factor for
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a linearized system of constant reference impedance, then performing a line search for a
value of comparable magnitude. For real data, the approximation was correct within a

factor of two, but varied with the reliability given to the extracted events.

Adjusting for geophone amplification

Inversions of real data quickly showed that geophone coupling varied significantly
and unpredictably. The data set of Figure 7 revealed that amplitudes could vary as
much as 30% for equivalent events in neighboring traces. Inverted impedances were
obliged first to accommodate these variations and only then could attempt to model the
reflected energy. For this reason an additional physical parameter amplifying entire
traces seemed desirable. After forward modeling o(z) and g () with equations (1-3), I

scaled each trace by independently determined constants a ().

y'(z,t)=a(z)y(z,t) (16)
The same scaling must be applied before calculating the adjoint. I initialize a (z)=1.

I calculate a(z) only after full perturbation of oz ) and g (t). The first iteration
attempts to model direct, down-going energy by perturbation of g(t); o(z) remains
constant until the reference wavefield is non-zero. The most important change of ampli-
tudes in direct arrivals is due to irregular geophone amplifications rather than transmis-
sion losses. Subsequent inversions of reflected events overwhelmingly determines the
perturbations of impedance; geophone amplification must adjust accordingly. At the end
of each iteration I calculate the amplification a(z) which makes the forward model
resemble the data best in a least-squares sense. I assume a large variance of 10% for a (z)
and a variance for the noise equal to that of the data. The linear ls. system requires

only a few dot products for computation.

A ROBUST VSP INVERSION

Again, I refer readers to the paper of Harlan and Lailly (1984) for explanation of
the statistical tools used below. I mention the function of each tool but omit algorithmic

details involving the manipulation of histograms.

First I note the position of statistical calculations in the algorithm and then ela-

borate.
1. Calculate first-arrival times as the travel-time depths of the geophones.

2. Initialize o(z) =1, g(t)=0, a(z)=1. Assume C,? and C,? equal the variance of

the data samples, and C 2 =~ .1
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Calculate gradients (11) and (12) for d o(z )/dz and g (¢).
Estimate the signal and noise pdf’s for the impedance gradient.

Apply the Bayesian estimator of signal to the impedance gradient.

A

Accept only those impedance perturbations containing a sufficiently low percentage
of noise with a sufficiently high probability. Accept only the most reliable pertur-

bations if too many satisfy this criterion. Stop if no innovations are acceptable.
7. Calculate the appropriate scale factor for the perturbations.
8. Update g (¢) and o(t).
9. Update a(t)
10. Go to step 3.

First-arrival times are signal parameters to be inverted. They are routinely
estimated in VSP processing. Since only relative arrival times are important for indexing
the traces, I recommend estimations from cross correlations. Lost of high frequencies
with depth will not affect the peaks of these correlations. All events other than first
arrivals ought to be suppressed. L’Institut Frangais du Petrole provided the VSP of Fig-

ure 7 and the first-arrival times of Figure 8.

Note that multiplying oz ) by a constant and dividing g (z) by the same does not

affect the modeled data. I choose unity as a convenient reference impedance.

I do not attempt an extraction of signal for the source-waveform perturbations.
Experiments show these to be sufficiently Gaussian to satisfy the assumption of func-
tional (8).

Estimating signal and noise pdf’s are discussed at length by Harlan and Lailly
(1984). In brief, the form of functional (8) insures that the gradient of do(z)/dx and
g(t) are linear functions of the residual uninverted events. Thus, if noise is additive to
signal in the data, noise will be additive in the gradient. Assuming signal and noise to
be statistically independent requires the actual pdf of the gradient to be a convolution of
pdf’s for the signal and noise, py() = p,(-)*p,(-). A histogram of the gradient esti-
mates the pdf p;(-). One may obtain a pessimistic estimate of the pdf for noise (overes-
timating) by randomly rearranging the samples of the residuals before recalculating the
gradient. Noise statistics (assumed stationary) should remain the same; signal, however,
will now destructively interfere after linear transformation, and behave as additional
noise. A histogram of this noise gradient pessimistically estimates the noise pdf, p, (*).
A minimum cross-entropy deconvolution of histograms gives a pessimistic estimate of the

signal pdf, p,(-). Iterative subtraction of the most reliable events from the data will
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reduce the effect of signal converted into noise and increase the reliability of the pdf esti-

mates.

Next take the signal and noise pdf’s for the impedance gradient and calculate the
most probable value for the signal present in each sample. Let d be the amplitude of a

given sample. Then the best (Bayesian) estimate of the signal amplitude for this sample
should be

ds = Js pi(s) p(d—s) ds

§ =E(s|d)=[s p,a(s|d) pa(d)

(17)

Though we may say that we now have the most probable values of the signal in our
perturbations, we have not yet determined how probable these are. I define the reliabil-
ity of a given estimate § as the probability that the actual value is no more than a frac-

tion ¢ of d away. I decide to accept a given perturbation § if

l-e <pled <s-5§ <cd | d] (18)

cd
_fdps ('§ - S )pn (s )dS

T 26 = 8)pa(s)ds

where both ¢ and e are small numbers. For the extraction of Figure 6, ¢ =e =.05.
Additionally, one should not accept too many innovations in a given iteration. If many

samples meet condition (18) we accept only the most probable.

The remaining steps of the algorithm are as previously described. I use the golden

mean algorithm for the line search of step 7.

Figures 9 through 13 show the results of applying this algorithm to the data of Fig-
ure 7. Three iterations were used at 20 minutes of VAX 11/780 computer time per
iteration. Note that uneven sampling of geophones with depth did not prevent an accu-
rate inversion of most events. The tube wave, having a velocity inconsistent with the
first arrival, was effectively ignored. The most reliable noise could be extracted and sub-
tracted from the original data for an improved second inversion. Here, ¢ =.05 and
e =.5 in equation (18). Convergence was reached at the third iteration, a bit too rapid
for sufficient simplicity in the inverted impedance function. Reducing the number of
perturbations allowed in an iteration would simplify the impedance function and slow

convergence.

Impedance depths not spanned by the VSP direct arrival were not perturbed by the

inversion. The impedance must be fixed for these depths before late reflections can
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dominate the gradients.
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