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Elastic inversion using ray theory
Peter Mora

INTRODUCTION

This paper extends the SEP-38 paper titled “Inversion of CMP gathers for P and S
velocity”, in which I introduced a method of elastic inversion using ray theory. The
inversion method was based on nonlinear least squares and proceeded iteratively, for-
ward modeling and updating the physical parameters, until a minimum error solution
was located. The forward modeling part of the algorithm was a ray theoretical method,
which computed P-wave primary reflections with the restriction that the physical model
be homogeneous plane layers. The main reason for using the ray theoretical method was
for computational speed of forward modeling. Another reason was that it enabled the
Frechet derivatives used in the inversion algorithm to be computed analytically. (The

Frechet derivatives represent the linearization of the nonlinear function.)

The elastic inversion algorithm solves for P velocity, S velocity, density and source
wavelet using the amplitude information contained in a common midpoint gather. It
requires that a sample rate for the plane layers be specified, which enables the modeled
wavefield to accurately simulate the common midpoint gather data. Therefore, layer

boundaries need not be specified but will be located as part of the inversion process.

This paper extends the ray equations of the earlier paper to include all primary ray
modes and the ray spreading term. (See Mora, SEP-41 for a simple derivation of the ray
spreading term.) The primary rays are the PP and SS reflections and the converted
modes, PS and SP. The equations have been reformulated from the frequency domain to
the time domain. This improves the efficiency because the convolution of the source
wavelet with the impulse response is faster in the time domain than in the frequency
domain if the source wavelet is short relative to the total length of the time series. The

ray algorithm was also modified so the layers have constant vertical P-wave traveltime.
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This helps to stabilize the inversion by avoiding movements (at zero offset) of the dom-
inant PP reflection hyperbolae from one iteration to the next. Another improvement to
the algorithm is that the reflection and transmission coefficient derivatives are computed

analytically whereas previously they were evaluated using a finite difference formula.

Some automatic methods for choosing data variances are described. The model
variances are chosen manually and are crucial to stable inversions. Usually several trials
must be carried out in order to obtain model variances that result in a satisfactory
inversion. A discussion of the meanings of variances in nonlinear inverse problems is
included and finally an example of an inversion of synthetic data is given. In order to
study the inversion process, and particularly the sensitivities of the different model
parameters in a controlled situation, the synthetic data was generated using the same

ray modeling algorithm as was used in the inversion and no noise was added.

A 100 layer model was generated with random but non-Gaussian distributed physi-
cal properties. The layers were 8 milliseconds thick measured in vertical two-way P-
wave traveltime and the inversion was carried out for P velocity, S velocity and density.
The data used in the inversion was a 16 fold CMP gather sampled at 8 milliseconds (ie:
with the same sample rate as the layers). The solution is not perfect in this example.
There are at least four possible reasons. (1) The iterations may have been terminated too
early, (2) The choice of the model covariances may not be ideal, (3) The example may
contain a null space that corresponds to those model perturbations that do not
significantly alter the modeled wavefield and hence cannot be resolved. The null space
problem is tied in with both the choice of data and model covariances and the implicit
resolvability of the physical parameters, (4) Degradation of accuracy due to use of the

data space contraction method (see Mora, SEP-41).

FORWARD MODELING AND FRECHET DERIVATIVES

Ray modeling

The ray theoretical CMP wavefield recorded at the earths surface is the sum of
wavefields due to all possible raypaths between the source and receiver pairs. Therefore,

the CMP wavefield denoted u (m,z ,w) is given by the sum

u(m,z w) = U (m,z ,w) = 2 u; (m,p; (m,z),w) (1)
j j
where m is the model vector, p is the ray parameter, z is offset and w is angular fre-

quency. From ray theory, the wavefield due to the J-th raypath through a one
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dimensional earth is
uj(m,z,w) =s (w)a;(m,z )exp (—1 wr; (m,z)) (2)
= s(w)a; (m,p;(m,z))exp (—i wrj (m,p; (m,z )))

where s (w) is the source, a; is the complex amplitude and 7; 1s the traveltime.

Frechet derivatives

The Frechet kernel is the partial derivative matrix of the CMP wavefield with
respect to model parameters. Using the chain rule, the derivative of uj (m,z ,w) with

respect to the k-th model parameter is

ou;
G (mz ) = 3 5z )
Ou; Op; Ou;
= —7 W) — ——J . 3

The second term represents the derivative of the wavefield in the p -domain, which is the
domain where the ray tracing is performed. The first term is the adjustment that con-
verts the derivative from the p-domain to the z-domain. (This is required because z;
and p; are dependent, i.e. p; = p;(m,z).) From equation (2)

Ju;

da; or;
L (m,p; w) = u; m,p; w [L L (m,p;) ~ 5 w—2 m,p: ] 4a
Ou; 1 9da; . Or;
bﬁ-(m,pj w) = u;(m,p; w) ? 8m; (m,p;) - zwamjk (m,p]-)) (4b)
Op;
e m,z ) term of equation (3) may be computed from the equation for p.(m,z).
The —2 f equati b d from th ion for p;
mg

However, usually the offset z; (m,pj) as a function of ray parameter is known. In this

case the derivative of the ray parameter with respect to the k-th model parameter
apj

(m,z), is evaluated by setting the total differential dz; to zero.

omy,
Oz Oz;
J J

This equation defines the relation between a model parameter and the ray parameter for

the j-th raypath in order that the offset z; be fixed. Rearranging equation (5) yields

(9pj dp] 627] 6‘:1:] -1
I ™) = | =Gt (G ) (6
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Substituting equations (4a) and (4b) into equation (3) yields the Frechet kernel in

the frequency domain:

1 Baj . Brj p;
aj ap] (m}p] ) tw ap] (m;p] ) amk (m,x)
Ju .
Ty E ) =R 1 9a; or; ")
J - —_ Yy

Equations (6) and (7) define the analytic ray theoretical Frechet derivatives. However,
equation (7) is not a computationally efficient form of the Frechet derivatives if the
source wavelet is short in relation to the time axis. This is because convolution of a short
wavelet with a long time series may involve less computations than multiplication in the
frequency domain. The —¢{w terms of equation (7), which correspond to time derivatives,
are now grouped together and after some substitutions the expression is inverse Fourier

transformed to yield the time domain Frechet derivatives:

aT' ap aT'
— 3 J I J )
| Gpntmp) 5o (me) + 5 ;)|

Z u]( )p] 7("))
. 1 9s 1 Oa; Ip; 1 Oa;
+ s Om, (w) + a; 9p; ( ’p’)am,, (mz) + a; Omy

(mipj)

. 1 0
= E uj(mrpjrw) [-ZWAj(m;pj:mk) + Bj(m:pjimk) + _a 5 (w)]
J § omy

. ; 1 o
Y. s(w)a;(m,p;)ezp (—iwr; (m,p;)) [‘“‘)Aj (m,p;,m) + B;(m,p; ,my) + :81;;
7

(w)]

Z s (w)exp (-1 wr; (m,p;)) [—inj (m,p; ,my) + D;(m,p;,my) + a;(m,p; )% 8?: (w)]

Re{oj(mxpj:mk)}y (-7, (m’Pj))Hm{Cj (m:Pj:mk)}H{‘S' (t—Tj(m’Pf))}
s(£)*)]
—F j +Re{Dj(m,pj,m,,)}5(t—Tj(m,pj))—f—lm{Dj(m,pj,mk)}H{&(t—rj(m,pj))}

_|..

Js
my

()7 [Reasmpy) (e, (m )1 mp,) | {0, (e, )]

(8)
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where H represents the Hilbert transform, & is the Dirac delta function and the
Cj(m,p;,my ) and D;(m,p;,my) terms are defined in equations (10a) and (10b). There-

fore, the time domain Frechet kernel is:

Re{C]- (m,p; ,mk)}s' (¢-7;(m,p;))

+Im{0j(mxpj’mk)}H{3’ (t—Tf(m:Pf))}
> y Mg = VUp,Vg,p
J + Re{Dj (m’Pj:mk)}s(t—T.i (m,p;))

Ju
amk

(m,z,t) =

+ Im{Dj (m,p; ,my )}H{s (t-7; (m,pj))}

Re{aj(m,p]-)}é(t—T~Tj (m,p;))

i +Im{aj(m,p]-)}H{é(t—T—Tj(m,Pj))}

where the derivatives with respect to physical model parameters vp;, vg and p; are
shown separately from the derivatives with respect to the source wavelet s(T) and

C;(m,p;,m;) and D;(m,p,,m; ) are defined below.

ar; Op; o7
da; op; da;

So far the formulas are generally applicable to rays travelling a 1-D earth. The fol-
lowing derivations specialize the formulation to primary reflections only and so includes
only the PP, PS, SP and SS primary rays. Henceforth, subscripts v and d are used
to represent the upgoing and downgoing wave types so both » and d may be either P
or §. Other subscripts used are ! for a ray reflected from the /-th interface and J for
the j-th layer. Also, for brevity, let p = puat (m,z ). The equations for ray amplitude

ayg (m,p ), traveltime 7,4 (m,p ) and offset z,4 (m,p) are

Audl (m,p ) = dudl (m,p )Rudl (myp ) 'I—]-:l ( Tuj (m:p )de (m)p )] (11)
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Tua(m,p ) = El] Az; . L (122)
udl P j=1 J ’qu COSG‘U‘ ‘Udj cosGdJ-
Ty (m,p) = E Az (tanfy; + tand,;) (12b)

i=1

where d is the ray divergence factor and R and T are the complex elastic reflection and
transmission coefficients respectively. The ray divergence factor (from Mora, SEP-41, “A
simple geometric derivation of the ray spreading factor”) is

. -1
cos“0 ! Vyj Vg;

d1l E AZ]- uj + dj ]

: 30 . 30 ..
j=1 cos’f,,; cos"0;

cosfly cosl, |
) _ 13
wat (m,p ) [ cosfy1cosb, ] V41 "

If P-wave traveltime through layers is held constant and the trigonometric factors are

expressed in terms of ray parameter p and velocity, equations (12) and (13) become

l

1 1
rua(m,p) = Y vp; At; [ + ] (14a)
i=1 v,,j\/l—pﬁvu?- vd]-\/l—p%d?-
/
DVy4; pv
Ty (mp) = Y vp; At; ]2 > 4 } (14b)
j=1 \/1 —-p Vdj \/1 —-p vu]
dyg (m,p) =
T3 B
V1-p vaiy/1 - (1-p23) lAz-[ Uyj " Vgj )
j
V1-p vy \/1 - p v Yd1 j=1 (1- P2”u3')3/2 (1- p2”d§)3/2
-1
= fual(m,p) = (F1FoFs3) (15)

The terms required for the Frechet derivatives (see equations (6), (9) and (10)) are

Np 2'UP]' At;
(1- pvg;)*?
N(2p?vé - up; At;

vgi(1 - pPugh)*/?

0

0Ty

Bmk

Npup; At; (2 ~ pZvp})
(1 - pPui)3/2
Np’UPJAt
—{(m, = “
0

LM
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my = vp; , j <I

my = vg; , J <I (16)
, otherwise

my =vp; , §<I

m, = ij ,]SI (17)
, otherwise
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where N =2if u =d and N =1if u #+ d; and

axmﬂ (mp) _ XI: vpj ’qu At] ij ’Ud]' AtJ
o =t -p2, %% (1 p2y 2y
6(1[
amk (m)p) -
1 9Odyy (m.p)
: ) dyy Omy =
a;\m,p min (§+1,1) OT.. OT.
’ 1 d 1
i=j dj my uj my,
1 9dya 1 OR,y
m,p ) + (m,p
( ) duai omy, ( R,y omy )
4 \m,p min (j+1,1) AT, OT. .
’ 1 dj 1 ujf
+ [— m,p )+ (m,p ]
121 Td] 3mk ( ) Tu] 3mk )
1 ORyy
4 (m,P)Rudl a—mk—(m,P)
0
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my, — layer 1

<

my — layer |

t =1

my — layer 1

1 =1 +1
otherwise
(19)

The remaining terms required in order to evaluate the Frechet derivatives are the ampli-

tude derivative terms of equation (19). From equation (15), the ray spreading derivative

is
1 Odyg _ 1 ddyy Of wat _
dud[ 8mk (mlp) - dud[ afudl \fudl) amk (mlp) — T %udl
where from equation (15) and using the product rule we have:
3/ ua oF, oF o,
—_ = FyF3+ —=FF
oy (m,p) By 23 + B, 3 + B

From equation (15), which implicitly defines Fy, Fy and F3, we obtain:

N’UP]' AtJ (2 + p2'l)P3')

y My = ij
(1~ P2UP2;')3/2
OF3 | Nup; At;(1 + 2pPugd) . .
= ) k= Usj
Imy, (1- P2Us§)3/2
0 , otherwise
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pPf -1
2 y My = Vg
oF , Vi1
omy, - 0 , otherwise (23)
2, 2
_.p v.
W;T)Fl mp = v; = v, or vy
- J
oF, pv?
s = (l—p;v-2)F1 mp =v; =y or vy (24)
j
0 otherwise

As may be expected, the ray spreading derivatives given in equations (20) to (24) were
found to have a second order effect on the Frechet kernel and so can be ignored in most

practical computations. This was done in the inversion example in this paper.

or;
All the derivatives with respect to p in equation (10) such as 3 J. (m,pj) are com-

j
puted numerically using cubic splines.

Finally, the reflection and transmission coefficient derivatives in equation (19) are
evaluated by solving the equations below. Let the elastic boundary conditions be given

by the linear equation
AX =B (25)

where X is the 4 X 4 complex scattering matrix. Taking the derivative of both sides

A X + AX!' =B' (26)
Rearranging equation (26)

X' =A7YB' -A' X) (27)
Therefore, the elastic boundary conditions A and B and their derivatives A’ and B’
are all that is required in order to compute the derivatives of reflection and transmission

coefficients. (Note: A is made non-singular by addition of an infinitesimal amount of

attenuation, thus avoiding problems with Rayleigh poles etc.)

INVERSION

Discussion

The following is a review of the inversion theory applicable to this paper. Inversion
may be considered to be the process of locating the model m that maximizes the poste-

rior probability given the prior probabilities and knowledge of the theoretical
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relationship between data d and model m (Tarantola, 1982). Many simplifications result
from choosing particular prior distributions; in particular, the choice of Gaussian “pri-
ors” leads to the well known least squares solution. In this paper, I have chosen Gaussian
priors in order utilize the tractable least squares formulae even though neither data nor
model errors may actually be Gaussian distributed. Although it would seem a major
flaw to assume probability functions that are most likely not correct, a reasonable solu-
tion may still be obtained by sacrificing some of the a priori model constraints and pro-
babilistic rigor. This is because the inversion can be performed iteratively (even for
linear theories) while allowing the Gaussian a priori information to vary during the itera-
tions. (This is contrary to the philosophy presented by Tarantola, 1982.) For example,
the background model may be allowed to change during the iterations. Therefore, the
standard deviation and mean of the Gaussian probability functions is not held constant
during the iterations. The true prior information about the model is essentially ignored
and the Gaussian model statistics are only used to control the model perturbations at
each iteration. In some cases this iterative approach would yield the correct probabilistic
solution; for example, suppose the model were expected to have Gaussian statistics but
about an unknown mean. (This unknown mean can often be given constraints such as
smoothness.) A problem with allowing the background model to vary is that nonlinearity
1s introduced so the iterations may become unstable. This problem can often be solved

by constraining the background model using some criterion such as smoothness.

The problem of non-Gaussian data errors can be partially solved by enabling the
data covariances to vary spatially and also as a function of iteration in a manner similar
to the way the background model is allowed to vary with each iteration. This method

was used by Thorson in his thesis (SEP-39).

To summarize, inversion by least squares is based on Gaussian prior probability
density functions. In practice, the method may be utilized when the errors are non-
Gaussian or the equations are nonlinear by performing an iterative inversion in which
the prior information is allowed to vary with each iteration. Specifically, the data and
model covariance matrices and the background model may be changed at each iteration.
This introduces an additional nonlinearity to the problem. The way that the back-
ground model and covariances are updated during the iterations is crucial to the stabil-
ity of the least squares inversion as well as the accuracy of the final solution. Henceforth,
the Gaussian prior information will be considered to be a function of iteration and is
termed pseudo prior information to distinguish it from the true prior information, which

may or may not be Gaussian.
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Review of least squares inversion

Consider the case of Gaussian prior probabilities where the covariance matrices are
C4 and C,, for the data and model errors respectively. The posterior probability is

given by the product of the prior probability functions (see Tarantola, 1982) so we have
P = constant exp—% [Ad*cd-lAd + Am*Cm‘lAm] (28)
where Ad is the data error and Am is the model error. The posterior probability is
maximized when the weighted least squares functional F' given below is minimized
F = Ad*C4'Ad + Am*C,,'Am (29)

Let the a priori data or observations be denoted dg and the a priori model be denoted

mg. Therefore, the data and model errors are respectively
Ad = d(m)-d;, and Am = m-m, (30)

where d(m) denotes the assumed exact theoretical relationship between data and model.

At a minimum in the error functional, its derivative with respect to the model is zero so

SF _ p*cylAd +C,Am = o (31)
dm
where D = -Q%(El Assuming a linear theoretical relationship in the vicinity of my,
m
we have D = 6d(m SO
om  |(m = m,)
dim) = d(mg) + DAm (32)

The model perturbation Am required for a minimum in the error functional is obtained

by substituting equation (32) into equation (31) and rearranging terms.
-1
Am S [D* Cd_lD + Cm_l) D* [do - d(mo)] (33)

For nonlinear functions d(m) this equation can be applied iteratively in order to obtain a
solution. The nonlinear inversion equation is derived by performing appropriate substi-
tutions for model error Am and data error Ad and using some linearization D of the
theoretical relationship d(m) valid in the vicinity of the a priori model. The model error
at the (n +1)-th iteration is

Am = my, ., —Imy (34)
Similarly, the data error at the (n +1)-th iteration is

Ad = d(m,;)-d, (35)
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In the vicinity of the a priori model we have the linear relationship
d(m,;) = d(m,)+ D(mg)(m,; -m,) (36)
Equation (36) is abbreviated to
d,;,;, = d, +D0[mn+1_mn ) (37)

Substituting equations (34), (35) and (37) into equation (31) and rearranging (see also
Tarantola, 1982) yields

1
My = my + (D0 DtCp ) [DYCyHdy - d) - O, )| (39)

This equation is generalized to allow the a priori information Cqh, C, dgy and m, to

vary with iteration n, so
-1
my ) = m,+ {DOZ Cdn_IDOn '+_Cmn_1 [DOtz Cdn_l(dOn _dn )_Cm;l(mn —myg, )] (393')

Usually it makes little sense to alter the observations d, as iterations proceed so we
would normally have dg, = dy. The Frechet derivatives Dy, represent the linearization
of the nonlinear equation d(m) computed at the pseudo a priori model mg, . Sometimes

1t is advantageous to use the approximation
Dy, =~ D, = D(mn) (39b)

For example, if D, was computed as part of the forward modeling, then it would be
more efficient to use approximation (39b) than to solve the forward problem again using
the model mg, in order to compute the exact value of Dy, . (This approximation was
used in the inversion example in this paper). For highly nonlinear functions d(m), other
approximations for Dy, may be useful such as the expectation of D(m) given the prior

probability density function for m, ie:
Dy, ~ E(D(m)) (39¢)

This approximation would effectively smooth nonlinearities in d(m) in a probabilistic
sense and hence lead to a more stable inversion. Unfortunately, it is computationally
expensive to evaluate E(D(m)). Smoothing of D(m) should be useful in general

because it makes the function d(m) appear more linear in a local sense.

The biggest practical difficulty in an inversion using equation (39a) is the choice of
the pseudo a priori information, Cj! and C.l . and my,, as iterations proceed. (The

[4

qualifier “‘pseudo” is used to emphasize that this information is not truly prior informa-

tion because it is changed during the iterations.) This choice is especially important for
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nonlinear functions d(m) where the pseudo a priori information is used to stabilize the
least squares iterations. Constraints on the pseudo a priori information sometimes
achieve stability. These constraints, coupled with the pseudo a priori information, may

be considered to be the effective a priori state of knowledge.

One final note on the method is that it cannot handle the problems associated with
multiple minima in the error functional. Therefore, the solution obtained will be a local
minimum and not a global minimum. However, if the starting guess is within a closed
contour on the error functional around the global minima, then equation (39a) will locate

the least error solution provided the equation is carefully implemented.

Automatic choice of data covariance

The data covariance matrix required by the least squares inversion formula is not
known in general but with some assumptions, it may be estimated from the data. The
simplest assumption is that noise is independent and Gaussian with stationary statistics.

The inverse covariance matrix in this situation has the form

1
2
Odn

Cqn' = I (40)
where I is the identity matrix and o, is the estimated data variance at the n-th itera-
tion. The data variance at each iteration o, can be estimated from the data error

do-d, using
1
Ud2n = E(do - dn )*(dO - dn) (41)

where n 4 is the number of data points. This formula has the advantage that the data
variance will decrease as iterations proceed and the error decreases. The data, variance
essentially damps the model perturbations evaluated by the least squares inversion for-
mula. Therefore, more damping occurs when the error is large and the model is far from
the solution and less damping occurs when the model becomes close to the solution. As
the least squares solution is approached, the estimate of od, should approach the true
noise variance. This method decreases the likelihood that the least squares iterations
will become unstable due to nonlinearity of the geophysical theory. This is because the
damping is largest when the model is far from the solution and the effect of nonlinearity
1s strongest. Unfortunately, stability is not assured by using this method of choosing
data variance but at least it chooses the variance in a qualitatively sensible manner.

(This method is due to Dale Morgan of Stanford, pers. comm., 1984)
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A generalization of Dale Morgan’s method outlined above is due to Jeff Thorson
who allowed for spatially variable data variances. In this case the covariance matrix is
diagonal but with a non-constant value along the diagonal. Thorson used the smoothed
envelope of the error in his estimation of spatially variable data variance. This method
would be useful when doing field data inversions in order to suppress the influence from
the noisiest regions in the data. For example, regions containing non-Gaussian coherent

noise such as ground roll will be treated as areas of Gaussian noise with a large variance.

If the geophysical theory is almost linear, it may be better to simply estimate the
noise level NV, and use a constant value for 0f, as a function of iteration. Then the

value of 62, would be

1
0d2n = de-do*do (42)

Choice of model covariance

It is more difficult to choose model covariances for iterative inversions than data
covariances. This is because useful “pseudo’” model covariances, which are used for
damping, may bear no relation to the a priori values especially for highly nonlinear func-
tions or when statistics are very non-Gaussian. (This is discussed in the section that
reviewed least squares inversion.) A good choice of the model covariances should lead to
a stable inversion. (This may be considered a definition of a “good choice”.) The covari-
ances should be chosen to damp each physical parameter in a sensible way from one
iteration to the next. If the model parameters are assumed to be independent then the
covariance matrix would be diagonal. Sometimes it makes sense to use non-diagonal
covariance matrices. For example, if you desired the perturbations in the model parame-
ters to be smooth, some covariance between adjacent layers could be introduced.
Another possibility is the introduction of covariance between different physical parame-
ters. For instance, suppose P velocity was known to correlate well with S velocity. Then
introduction of a covariance between P velocity and S velocity may help stabilize or even

speed up the inversion.

A useful rule of thumb is that model perturbations from one iteration to the next
will tend to be smaller than the standard deviation implied by the choice of covariance
matrix provided the data covariances are reasonably accurate. For example, if a diago-
nal covariance matrix of form o2l was chosen, the model perturbations would tend to be

less than about o,. (ie: Perturbations greater than om would have a low probability of

occurrence.)
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Summarizing, an inversion would normally begin with some fairly small model vari-
ance In order to stabilize the iterations. As the algorithm converges, the model variance
should be gradually increased until either the true a priori variance is reached, or any

model parameters begin to diverge.

Choice of a background model

The background model is the a priori state of knowledge of the physical model.
This may be varied from one least squares iteration to the next in order to achieve a
non-Gaussian model solution. (See the discussion in the section which reviews least
squares inversion.) A sensible choice of this background model is crucial for stable inver-
sions. The simplest choice for the background model is the previous iteration. A better
choice has been found to be a smoothed version of the previous iteration. (This is done
In the example given in this paper.) The smoothing is carried out independently for each
physical parameter over depth. This avoids buildup of the poorly resolved Nyquist jitter
in the model from one iteration to the next. Nyquist Jitter in the model is seen as model
perturbations that alternate between positive and negative from one layer to the next.
The Nyquist frequency for layers is poorly resolved when there is little or no energy in
the seismic source wavelet at this frequency. Note that traveltime and amplitude infor-
mation contained in reflection hyperbolas helps to constrain the low to middle frequency
components in the model so these components tend to be fairly well resolved. (In prac-
tice, one could simply choose the layer sampling such that the layer properties are fairly

well resolved, for instance the 1/2 Nyquist sample interval or the fundamental period.)
EXAMPLE

Synthetic data inversion example

Random properties for a stack of 100 layers were generated using non-Gaussian
statistics. The resultant logs for P velocity, S velocity and density are shown as the solid
line in figure 1. A synthetic CMP gather was generated using the ray equations sum-
marized by equation (2). An explosive source type and vertical component geophones
were used in the forward modeling. All primary ray modes were computed but because
the source was explosive, the only non-zero modes were the PP and PS. The synthetic

gather is shown in figure 2 with a time varying gain of 5.

A least squares inversion was performed using equation (39a) and the approxima-
tion (39b) with data variances computed assuming 10% noise (ie: N = .1 in equation

(42)). The inversion was carried out in a contracted data space in order to improve the
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efficiency. (See Mora, SEP-41 for details of the method of data-space contraction). The
properties of the first layer were fixed at their true values during the inversion. This
effectively fixes the ray amplitudes incident upon the second layer. Equivalently, the
complex ray directivity function at the top of the second layer was assumed to be
known. (This directivity can be evaluated in the inversion if it is unknown thereby
avoiding a detailed knowledge of the layers above the zone of interest.) The starting
guess used in the iterative inversion was a linear fit for the P velocity, S velocity and
density shown as the broken lines in figure 1. After a little experimentation, suitable
model variances were found which resulted in a stable inversion. The initial standard
deviation used to damp the iterations was .1 km/sec for P velocity, .15 km/sec for S
velocity and .05 gm/cc for density. As the iterations proceeded, these values were
mcreased by a factor of ten. (This decreases the damping as the solution is approached.)
In order to achieve stability, the density variance was required to be less than the vari-
ances used for the P or S velocities which possibly indicates that density is not as well
determined as P or S velocity. (These variances may be compared because the units
chosen for velocity and density are such that the numerical values of the different pro-
perties are similar.) Also, the method of using a smooth pseudo a priori model was
employed. The square error, normalized using the data energy, is graphed as a function
of iteration in figure 3. The error decreases to about zero by the 10-th iteration. The
inversion results after 10 iterations (broken line) are plotted on the same graph as the
true model (solid line) in figure 4. From figure 4, is is clear that the inversion recovered
the main features of all three logs. As expected, the inverted P velocity log is the most
accurate while the inverted density log is the least accurate. The forward modeled
wavefield and the error are plotted in figure 5 for several iterations to illustrate the way

the error decreases with iteration.

Notes on field data inversion

When inverting field data, it may be necessary to simultaneously invert for complex
directivity as a function of ray parameter at some specified depth. This would have the
advantage that source directivity as well as all the amplitude effects caused by the over-
lying layers would be removed. Therefore, problems of a complicated near surface and
lack of accurate knowledge of the true source and receiver directivity would be avoided.
It may be necessary to include a preprocessing step to remove any surface-consistent,

shot-consistent, or offset-consistent amplitude effects from the data to be inverted.
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SUMMARY AND CONCLUSIONS

In this paper, extensions have been to the ray scheme of Mora (SEP-38) that per-
formed an iterative inversion of a PP wavefield for the physical properties of plane layers
and the source wavelet. The scheme performs an iterative least squares inversion with
the Newton algorithm using a Frechet derivative matrix that was computed analytically
during the forward ray modeling. The process is an amplitude inversion of the complete
CMP wavefield based on the ray theoretical elastic amplitudes of primary reflections.
Hence, the amplitude versus offset information is utilized in the inversion. An expected
practical drawback in using such an inversion technique is that many factors affecting
amplitudes in field data cannot be accurately simulated. If this were a severe problem,
the results of field data inversion would be inaccurate. The extensions to the inversion
scheme, which are presented in this paper, are:

(1) Inclusion of other primary reflection mode types, PS, SP and SS.

(2) Inclusion of the ray spreading term.

(3) Transformation of the equations from the frequency domain to the time domain in
order to speed the convolution of a short source wavelet with a long impulse response.
(4) The ray equations were reformulated for constant vertical P-wave traveltime layers.
This decreases nonlinearity by diminishing movement of the dominant PP reflection
hyperbolae as P velocity is varied.

(5) Analytic calculation of reflection and transmission coefficient derivatives.

(6) Use of the method of data space contraction (see Mora, SEP-41, Data space contrac-

tion in overdetermined inverse problems)

A 16 fold synthetic CMP gather sampled at .008 seconds was computed by per-
forming ray modeling through a random 100 layer model, which had layers sampled at
008 secs of two way P traveltime. An inversion of this synthetic data was carried out
for P-velocity, S-velocity and density of the 100 layer model. The source wavelet, a first
derivative Gaussian curve, was assumed to be known exactly and so was fixed
throughout the inversion. The inversion results for this noise free synthetic example
matched fairly well to the true physical model used to generate the data. This verifies a
correct implementation and also gives some clues about the resolution of the different
parameters. The P-velocity is the best resolved, which is to be expected considering the
dominant energy in the data is PP reflections. However, the main features in both the

S-velocity and density logs have also been resolved.
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FIG. 1. Random, non-Gaussian logs used to generate the synthetic data (solid line) and
the linear fit used as the first guess for the least squares iterative inversion (broken line)
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FIG. 2. The synthetic common mid-
point gather generated by ray
modeling using the random logs of
figure 1. The ray modeling includes
both PP and PS primary reflections
and was computed for an explosive
source and vertical component geo-
phones.

FIG. 3. The square error as a func-
tion of iteration normalized to the
energy in the synthetic data. The
normalized error at the first iteration
is approximately one so the initial
error has about the same magnitude
as the synthetic data. The error
decreases to about zero by the 10-th
iteration.
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FIG. 4. Random, non-Gaussian logs used to generate the synthetic data (solid line) and
the result of the inversion after 10 iterations (broken line).
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FIG. 5. The modeled gathers d,, and the error dg-d, at various iterations. After about
10 iterations, the gather generated using the inversion result as the physical model
matches the synthetic gather of figure 2. Note that the modeled gather immediately
prior to the n-th iteration is denoted d, so the gather generated using the initial guess
is denoted d,.
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