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Data space contraction in overdetermined inverse problems
Peter Mora

INTRODUCTION

Discretized inverse problems with more known data points than than unknown
model points are overdetermined. The usual way to solve such inverse problems is by
using optimization techniques that minimize a cost functional defined by some given
norm. Equivalently, such optimization may be thought of as maximization of posterior
probability given the prior probabilities. The most popular norm is the L? norm, which
assumes Gaussian prior probability distributions. The methods of optimization are usu-
ally techniques of linear algebra that enable the minimum cost (maximum posterior pro-
bability) solution to be obtained. These techniques are computationally intensive and are
frequently formulated as matrix equations though operator concepts may also be useful
(Tarantola, 1983). Henceforth, the term inversion in this paper will refer to use of an
optimization technique, in a discretized overdetermined problem, to solve for the unk-

nown model vector.

A method of contracting the data dimensionality without destroying information
useful in the inversion is presented in this paper. Hence, an inversion in contracted data
space will be more efficient than an inversion in uncontracted data space in terms of
both memory requirements and execution time. The saving in memory and computation
time is greater for more overdetermined problems. These savings are such that the
rapidly converging but computationally intensive Newton algorithm (of least squares)

may become worthwhile.

The cost of the data dimension contraction technique is an increasing loss of accu-
racy as the data dimension is contracted more and more. In most practical situations,
where some noise must be added to stabilize the inversion, this loss of accuracy should

not be a major problem. The theoretical limit to the contraction is reached when the
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data dimension is the same as the model dimension. However, it has been found that
such an extreme data contraction leads to a significant loss of accuracy while only a
slight loss of accuracy is observed when the data dimension is not contracted below
approximately twice the dimension of the model vector. Hence, the method is effective in
reducing the data dimension of overdetermined problems to about twice the model

dimension.

LEAST SQUARES INVERSION AND DATA CONTRACTION

A linear equation in matrix form is
Ax = b (1)

Matrix A represents the equations describing the physical system. It has ng TOWS N,
columns where 7 4 is the number of data points or observations and 7, is the number of
unknown model points. The column vector x is the discretized physical model with
dimension n ., and column vector b is the data vector with dimension ng. For overdeter-
mined problems, there are more data points than model points so ng>n.,. The square

error functional is
E'E = (Ax - b)*(Ax - b) (2)

where the * indicates the conjugate transpose. The x derivative of the error functional
is zero where the error is at a minimum. Taking the x derivative of equation (2) and
rearranging the terms to solve for x yields the classic least squares formula (Newton

algorithm for linear systems)
x = (A*A'A*Db (3)
Consider a new square error functional rather than the one in equation (2)
E''E' = (A'x - b')*(A'x - b") (4)

where the prime indicates a contracted data space with ng'<ng. The condition that
the new least squares solution be the same as that of the old unprimed problem is real-
ized if the error functionals in equations (2) and (4) are identical functions of x. This
will be true if the result of dot products in both the primed and unprimed data space is

the same.

The following is a heuristic development of the method of data space contraction.
Consider equal dimensioned but otherwise arbitrary matrices C and D in the uncon-
tracted data space. We want the dot product C*D to equal the dot product C'*D’ in

the contracted space. Let C and D be partitioned into submatrices,
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A
C = C, (5a)
D, ]
D = D, (5b)
Then we have the dot product
C'D = C,"D, + C,*D, (6)
Now consider the equations |
¢ =C+C, , D = D;+D, (7a,b)
Hence,
C'"D' = C,"D; + Cy,*D, + C;*D, + C,*D, (8)

Observe that equation (8) looks the same as (6) except for the cross terms
C,"D; + C,*Dy. It was this observation which provided the clue to the data space con-
traction method for if the cross terms could cleverly be made to vanish while the other
terms were left uneffected, equations (6) and (8) would be identical. Then we would have
a powerful method of reducing the data dimensionality in overdetermined problems

without eliminating any useful information.

Now, instead of equation (7), we assume that there is a more general mapping
matrix M that maps from the unprimed to primed data space. Let the form of this

mapping be

C,
C,

C,

[ —
C = MC =M C,

= M,C; + M,C, (9)

- o]

Note that the mapping M has been divided into two parts, M, and M,, which act
independently upon C; and C,. Furthermore, let the M; be square matrices. Similarly,

matrix D is mapped into the primed data space so the equivalent of equation (8) in

primed data space is
C'"D' = C;"M,"M,C, + C,"M,*M,D, + C,"M;"M,D, + C,"M,*M,D, (10)

In order for the dot product in the unprimed space given in equation (6) to equal the dot

product in the primed space given in equation (10) we require
MI*MI = I and M2*M2 =1 (11&)
CI*MI*M2D2 + CQ*MQ*MIDI = 0 (llb)

Equations (11a) indicate that the mapping matrices M; and M, must be unitary
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(rotation) matrices. Equations (11b) are satisfied if we have the two conditions
CI*MI*MQDQ = 0 and CQ*MQ*MIDI =0 (110)

Therefore, for equality of primed and unprimed dot products, it is sufficient for the rota-
tion matrices M; and M, to have the property (11c), which states that the dot product
between any two differently mapped matrices is zero. In other words differently mapped

matrices, such as C; mapped with M; and C, mapped with M, are uncorrelated.

The problem of verifying the data space contraction technique is now reduced to
finding matrices M; and M, with the described properties. Because these matrices are
data dependent it should be possible to actually solve a system of equations for the map-
ping matrices M; and M, given a particular data set (i.e. matrices matrices C and D).
However, this would defeat the purpose of using the data space contraction method,
which is to increase the speed of an inversion algorithm and decrease memory require-
ments. Therefore, I will propose a particular set of mapping matrices M; that do a rea-

sonable job and give fairly accurate results as illustrated in the example.

The mapping matrices must destroy correlations between the different data
matrices C;, so I propose what I term random mixing matrices. Such matrices move
data from each location in the original unprimed space to an arbitrary random location
in the primed space. Hence, each column of a mixing matrix zero except for one unitary
element, which is located randomly but with the constraint that no two columns have
the non-zero element in the same location. I have chosen this very specific form of the
mixing matrices because multiplication by such a mixing matrix can be achieved
efficiently. This is important in the context of this paper, which seeks to provide a more
efficient method for solving overdetermined inverse problems. Therefore, multiplication

of a sub-matrix C; by a random mixing matrix M; is achieved by
Cli(k,m) = C;(k';,m) , where k'; = k';(k) (12a)

Thus, the mixing is a random reshuffling of row indices. It is argued but not proven,
that such a mixing matrix should largely destroy correlations that may have existed
between the different C; prior to mixing. Therefore, the conditions for identical dot
products in both uncontracted and contracted data spaces, equations (11c), should be
satisfied. It is expected that for large nq4', the suggested random mix mapping will be
good. This expectation is due to the belief that mixing somehow destroys correlations.
Therefore, the sums over n4' in dot products between differently mixed matrixes C'; are
sums of random numbers of unknown probability distributions. By the central limit

theorem such sums tend toward Gaussian distributions with width proportional to
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1/\/nq so the error tends to decrease as ny' increases.

The full mapping that corresponds to premultiplication by M, is achieved by

adding all of the mixed submatrices

C = Yo, (12b)

This sum is expected to introduce some inaccuracy by compounding the problem of com-

puter precision.

It is noteworthy that the mapping M does not have an exact inverse because it is
not square so it is not possible to return to uncontracted data space after a contraction
mapping. In other words, the mapping matrix M does destroy information content

although mapped matrices retain the same dot products (hence the usefulness of M).

EXAMPLE OF DATA SPACE CONTRACTION

A simple synthetic example demonstrates the data contraction method in the con-
text of least squares inversion (figures 1 and 2). The example illustrates the method of

data contraction and its accuracy for different degrees of contraction.

A random matrix A of dimension 256 times 16 was generated along with a random
model vector x of dimension 16. The data vector b was then generated by multiplying x
by A. The least squares solution was computed using equation (3). Subsequently, least
squares solutions were computed in the contracted data space for a number of different
degrees of contraction. The least squares model vectors are denoted x(¢) where the
superscript (¢) is the contraction factor. For example, a superscript of /2 indicates that
the data space was contracted to one half of its original size. The result of the least
squares inversion without data contraction is denoted xV). The model dimension in this
example was 1/16 of the data dimension and least squares solutions x(l), x(1/2), x(1/4),
x(1/8) and x(1/18) were computed. These results are graphed in figure 1. All solutions
overplot one another on this scale of plot so it is apparent that all degrees of data con-
traction yield fairly accurate least squares solutions. To highlight the errors, the
difference between each least squares solution x(°) and the uncontracted solution xV was
graphed in figure 2. From figure 2 it is obvious that the contracted results are quite
accurate except for x(1/1) where the maximum contraction was applied so the contracted

data dimension equaled the model dimension.

Note that this synthetic example is an ideal situation in which there is essentially
no correlation between any groupings of rows of A because A is random. For this rea-

son, it is expected that the inversion result would have been just as good had the mixing
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FIG. 1. Least squares solutions x(¢) computed with various degrees of data contraction.

The superscript indicates the size of the contracted data dimension relative to the
uncontracted data dimension.
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FIG. 2. Differences between the true least squares solutions and solutions where the data
space has undergone various degrees of contraction. Differences are denoted

Ax®) — x(¢) %D The superscript indicates the size of the contracted data dimen-
sion relative to the uncontracted data dimension.
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part of the contraction (12a) been ignored and only the contraction sum (12b) been
applied. For a more realistic example of contraction mapping results see Mora (SEP-41)

where the technique has been utilized in an elastic inverse problem.

DATA SPACE CONTRACTION WITH COVARIANCES

Data space contraction may be applied in general by simply replacing unprimed
values with primed values. The following section illustrates the method applied to the
more general least squares formula with data and model covariance matrices. Consider

the posterior probability density function
P = constant exp—% [Ad*Cd“lAd + Am*C,;lAm] (13)

where Ad is the data error, Am is the model error and Cq' and C;! are the inverse
covariance matrices for the data and model spaces respectively. The maximum posterior
probability solution is obtained by maximizing P and hence minimizing the error func-
tional (Tarantola, 1982)

E'E = Ad*C4!Ad + Am*C;'Am (14)

Assume the following linear theoretical relationship exists between data and model vec-

tors:
d(m) = f; + FAm (15)
Therefore, the data error is

Ad = dy-d(m) = d,- (fo+ FAm) = f-FAm (16)

where d is the observed data. The solution for Am = m - m,, found by setting the

Am derivative of equation (14) to zero, is
-1
Am = (F"CJ'F +C.'}) F*Cg'f (17)

Equation (17) can easily be put into the contracted form by replacing f, F and Cj?
with £, F' and C'q’. The primes indicate the contracted data space and so imply a
pre-multiplication of the original matrices by the mapping matrix M. This pre-
multiplication by M is done efficiently using equations (12a) and (12b). The contracted

form of equation (17) is therefore
A 1+ o -l 1y e o1
m = (F"C§'F' +Cgl) F*Cilr (18)

where the mapped quantities are given by
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f = Mf (19a)
F' = MF (19b)
O3l = CciV/¥M*MC /2 (20)
with the defining equation
cyl = oV ol (21)
CONCLUSIONS

A method for contracting matrix dimensions while retaining dot products has been
described. The method presents a more efficient method for solving overdetermined
problems by transforming them into equivalent but less overdetermined problems. The
transformation is achieved with a random mix and sum operation over the data dimen-
sion to a new primed data space of lower dimensionality. This transformation is sum-

marized by the dot product

D' — MD — [M1M2--~M,~~--Mn] D (22)

D,
where matrix multiplications by M; are efficiently computed by a random reshuffle of
row indices as described by equation (12a). A program listing which implements equa-
tion (22) is given in figure 3.

From the example it is apparent that no significant loss of accuracy results, as long
as the primed data dimension is greater than or equal to about twice the model dimen-
sion. (See Mora, SEP-41, for a more realistic example.) In practical situations, where
there is usually some noise in the data, the loss of accuracy introduced by the contrac-

tion mapping should be insignificant.
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# program to contract data matrix a with dimensions nd times nm
# to a contracted data matrix al with dimensions ndi=nm#*2 times nm.

define maxnd 1000 # define max data dimension
define maxnm 50 # define max model dimension
define maxndi maxnm*2 # define max contracted data dimension

integer map(maxnd),time()
real a(maxnd,maxnm),ai(maxndi,maxnm)
nd=maxnd ; ndi=maxndi ; iseed=time # initialization of data dimensions
do im=1,nm g do id=1 nd {a(id,im -—rand(lseed)}}# initialize data
do im=1,nm { do idi=1 ,ndi { a1(1d1 im)=0. } }  # initialize contracted data
call getmap(iseed,map, nd ,ndi) # get a map
do im=1,nm {
do id=1,nd { ai(map(id),im)=ai(map(id),im)+a(id,im) } # sum the sub-matrices
end
subroutine getmap(iseed,map,nd,ndi)
integer 1,j,nd,ndi ,map(nd),iseed
do j=1,nd { map( )=0} # initialize map

j=rand(iseed)*nd+1 # Initialize random index

# get a random nd to nd map

and(iseed)*nd+1 } ; map(j)=i }

do i=1,nd-1 { while(map( )=0) { j=r
map(i)=nd ; goto 1 } } #la,stpomt

do i=1, nd { if(map(i)=
#  convert the nd to nd mapping to an nd to ndi mapping
1 do i=1,nd { map(i)=map(i)-(map(i)-1)/ndi*ndi }

end

FIG. 3. Program to contract a matrix over the data dimension
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Apprehending an intruder
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