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Wave field extrapolation

Yves Dezard

ABSTRACT

The downward extrapolation of a zero-offset (stacked) time section by use of the
finite difference method in the 2D Cartesian space coordinates and frequency domain,
plus the concept of the exploding reflector model, gives a depth image of the earth’s
reflectivity interior, because the time events are migrated to their subsurface location.
This processing is designed to image time patterns when there are velocity variations in

both depth and lateral direction.

The one-way wave equation is extracted from the scalar wave equation first intro-
duced by Claerbout in 1972. We derive extrapolation operators by performing a matrix
finite periodic fraction expansion of the “square root operator”. This square root appears

naturally in the one-way wave equation.

The extrapolation operators that handle severe velocity variations in both depth
and lateral directions are split in 45-degree operators. The stability analysis, made with
absorbing side boundary conditions, gives a condition sufficient to guarantee the absolute

stability of the extrapolation scheme.

Reflectors dipping steeply up to 55-degrees are properly migrated by the extrapola-
tion operator generated by the first order of the finite periodic expansion, the so-called

45-degree approximation of the square root.

For complex structures, the conventional processing is abandoned for the prestack
migration, processing which requires wide-angle approximations of the square root. The
second order of the periodic fraction expansion, called the 65-degree approximation of

the square root, is then used to downward extrapolate the common shot gathers.
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INTRODUCTION

Migration methods to image the earth reflectivity interior have had constant
developments since the introduction of the scalar wave theory in reflection seismology by
Jon Claerbout (1970, 1976). The finite difference method to migrate time patterns (Claer-
bout and Doherty 1972, Claerbout 1976) was derived to solve the paraxial wave equa-

tion, commonly known as the 15-degree equation, in a moving coordinate frame.

This one-way wave equation is used to downward continue the wavefield in 3
medium whose velocity varies both with depth and with offset. The migrated section is
then obtained by applying the imaging concept of the exploding reflector model when
stacked seismic data are extrapolated. Stolt (1978) described a Fourier method to
directly map a zero-offset stacked section in a migrated section for a medium with con-
stant velocity. This scheme migrates steeply dipping beds and is limited to the sparse-

ness of lateral sampling of the seismic data.

Stolt has proposed a coordinate transform to extend use of this Fourier method to
a medium with velocity variations in depth. He also extended the implicit expansion of
the square root operator, approximation first used by Claerbout to derive the paraxial

equation, to the 45-degree equation in the frequency-wavenumber domain.

The same year, two depth extrapolation schemes to downward continue the
wavefield were introduced. The first of them (Kjartansson, 1978) solves the 45-degree
equation by using a finite difference method in the frequency-space domain. He properly
migrates in depth, time patterns in inhomogeneous media whose steep dips are less than
50 degrees. At the same time, Jacobs solved the 45-degree equation by using the finite

difference method in the time domain for a laterally homogeneous medium.

The second method (Gazdag, 1978) is the migration by phase-shift, which down-
ward continues the wavefield in a laterally homogeneous medium. Gazdag has extended
the phase-shift method to a medium with lateral velocity variations, by using the mean

of the phase-shift plus interpolation.

Francis Muir (1980) suggested approximations of higher orders than the 15- and
45-degree equations by representing the square root as a continued fraction expansion.
Ma (1981, 1983) derived wide-angle one-way wave equations in the time domain from the
scalar wave equation in a way similar to Claerbout and Doherty’s (1972) method to find
the 15- degree equation, Stolt’s method for the 45-degree equation and Berkhout’s (1980)

wide-angle convolution operators.

Ma split the wide-angle approximations in 15- and 45-degree type equations by first

splitting in the frequency-wavenumber domain, and then coming back into the time-
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space domain. Clayton (1981) extended the finite difference method first used by Kjar-
tansson for the 45-degree equation, to higher order approximations of the continued frac-
tion square root recursion. Jacobs (1983) used this approach for the pre-stack migration

of profiles in the Cartesian coordinate space and frequency domain.

In this paper, we first extract one-way wave equations from the scalar wave equa-
tion in the space frequency domain. Extrapolation operators are then derived by a
periodic continued fraction expansion of the focusing operator that appears after the

splitting of the one-way wave equations into two partial differential equations.

A causal dip-filter is implemented in the extrapolation operators in order first to
attenuate the evanescent waves, and second, to filter steep dips that give rise to migra-
tion artifacts (sparse sampling of the midpoint axis). An important by-product of using
the causal dip-filter is that the approximants of the recursive relation used to generate

the periodic continued fraction will better match the relation dispersion.

The extrapolation scheme, with the splitting of the extrapolation operators in 45-

degree type operators, is then described.

The stability analysis deserves much care in use, and a sufficient stability condition
is demonstrated for z-data independent absorbing side boundary conditions. The numeri-
cal analysis of the extrapolation procedure emphasizes the implementation of the 45- and

65-degree extrapolation operators, the two first orders of the finite periodic continued

fraction.

Examples using synthetic and field data examples are given for the depth migration
of stacked seismic cross-sections in inhomogeneous media. The continued fraction expan-
sion of the square root is derived from the scalar wave equation; we demonstrate that

the implicit and explicit expansions give the same approximation of the square root.

Finally, we build time extrapolation operators in the time domain from the explicit

expansion of the square root, which is the relevant continued-fraction expansion in the

time domain.

We demonstrate that the three first approximants of this continued fraction expan-
sion, the 15-, 45- and 60- degree time extrapolation operators, are the three operators of

interest for the migration of seismic data.

EXTRAPOLATION OPERATORS

We extract the one-way wave equation that downward continues an upgoing wave
from the scalar wave equation. The state variable that must be extrapolated is the pres-

sure wavefield over the square root of the impedance.
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One way-wave equation and extrapolation operators

The acoustic wave equation simultaneously supports two solutions, a downgoing
wave and an upcoming wave. The downward continuation of the wavefield recorded at
the earth’s surface is solved in the time-space domain either by the “non-reflective full
wave equation” (Kosloff) or by the time migration described by Claerbout (1976). The
downward continuation of the wavefield in the frequency-space domain is done either by
using the full scalar wave equation (Baysal and Kosloff) or by solving a one-way wave

equation, which supports only one wave.

We assume that the density model is a constant. Clayton (1981) has shown that the
density variations modify the amplitudes of the wavefield but not the phase, so that the
kinematics of the imaging are not affected by this approximation. The pressure

wavefield ¢z ,z,w) in the space-frequency domain is the solution of the acoustic wave

equation:
% &% w?
Y 4 - _ % 1
922 dz? v(z,2)? v ()

where v(z,2) denotes the velocity of the medium. In the discrete domain, the acoustic

wave equation becomes:

~DED, $-DED, p = -2y (2)

v
where D, and fo are, respectively, the discrete causal and anti-causal partial deriva-

tives with respect to z; (z;=z or z). In term of matrix operators, D, is a bidiagonal

matrix and DI{_I 1s its transposed form:

1
D, — v (0,-1,1,0,0) (3)

where (0,-1,1,0,0) denotes a pentadiagonal matrix whose diagonal coefficients are 1s. We
define a new state variable by dividing the pressure wavefield by the velocity, and multi-

plying each element in the left side of equation (2) by the velocity, to get:
(—UDZHDZ’U]%Z (—w2—f—vDJ,HD,51))-1£ (4)

v

The way to derive a one-way wave operator is to take the square root of both the
matrix operators encountered to the right and to the left of the equation (4). Because
these matrices are symmetric, they have positive eigenvalues, and it makes sense (as far

as mathematics is concerned) to take the square root of them. To downward continue
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the wavefield, we have to use a spatial anti-causal derivative with respect to the depth

variable z.

We first notice that the square of the spatial anti-causal operator D, is the pentadi-

agonal matrix:

D, D, =—1_(001,-2,1) (5)

Az

1
52

Here, the matrix operator — DZH D, is the pentadiagonal matrix (0,1,-2,1,0). When

this matrix is applied to the wavefield, we get the partial second derivative with respect
to the vertical variable at the depth z, while the square-matrix of the anti-causal opera-
tor D, gives the same derivative but at the depth z+Az. This feature explains the fol-

lowing approximation:
D, D, = -DfD, (6)

This approximation may seem to have an accuracy-costing counterpart, but this
loss will appear to be of third order in Az: we will later use the Crank-Nicholson

transform to both stabilize and improve the downward continuation scheme.

We now have to take the square root of the operator v D,D, v. When the velocity

has no depth variations, the velocity and the partial derivative with respect to z com-

mute, and :
1/2
(v D, D, v ) 2 w2 D, y1/2 (7)

When the velocity has vertical variations, the above relation is no longuer true, because
the partial derivative with respect to the depth and the square root of the velocity don’t
commute. The physics of the problem show that we can neglect the correction term,

which takes into account the non commutativity of these operators.

The downward continuation of the pressure wavefield is done by using depth incre-
ments of Az. To avoid aliasing in the z-axis direction, the depth increment Az must
have a magnitude less than the wavelength of the pressure wavefield. Thus, neglecting
the correction term in the square root operator corresponds to smoothing the variations

of the velocity on a wavelength. That smoothing is exactly what the seismic waves do.

Instead of a velocity log, which takes into account high-frequency variations of the
velocity because it uses a signal whose frequency is very high, a shot profile can detect
only velocity variations on a distance comparable with the wavelength of the seismic
waves. That limitation justifies the use of extrapolation operators, whose sensitivity to

velocity variations is the same as the sensitivity of the experiment we want to describe
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with these operators.
The next step in the derivation is to take the square root of each side of the equa-

tion (4), to get:

1/2
(v1/2pzvl/2]—f—zi(—w2+vaD,v]/% (8)

Let us denote by W the pressure wavefield over the square root of the velocity, and
by A the slowness of the medium (i.e., the inverse of the velocity). Thus we get from

equation (8):
1/2
D,V — A2 (-w?+vDID, v ) AV (9)

If we define the Fourier transform of the state variable ¥ by:

+00

Y(z,z,t) = f_oo dw e’ W(z,z w) (10)

then the one-way extrapolator that downward continues an upgoing wave is:

1/2
D, = +AY? (~w?+ v DED, v ) 2 g

(11)

The same operator can be used to downward continue a downgoing wave, by using

a negative integration parameter ~Az in the extrapolation scheme or by simply changing

the sign of w.

Shortcoming of the wavefield extrapolators

We have so far derived the downward and upward extrapolation operators; i.e.,
tools to extrapolate the wavefield in depth in both directions. Forward and backward
extrapolation operators of the wavefield are also interesting tools in seismic data process-
ing.

These operators extrapolate the wavefield laterally; i.e., in the midpoint-axis direc-
tion and in the frequency-space domain. If we define the 2D Fourier transform of the
state variable ¥ by:

+00 +00

V(z,z,t) = f dk, f dw e S (=) V(kz ,z,w) (12)
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The sign convention for the Fourier transform with respect to the lateral parameter

z 1s opposite to that with respect to the time ¢. Thus, the lateral extrapolators are:

1/

2
D, = A2 (-w?+ v DED, v ) A2 (13a)

1

) 2
D = +AYV2 (-w?+ v DED, v )" A2 (13b)

where the extrapolation operator D, forward extrapolates a wave travelling backward,
L.e. towards the left. Similarly, DzH forward extrapolates a wave travelling forward.

In accordance with Clayton (1981), we assume in what follows that the state vari-
able in a medium with density variations, is the pressure wavefield over the square root

of the impedance.

PERIODIC CONTINUED FRACTION EXPANSION

In this section, we split the extrapolation operator into two sub-operators, a phase-
shifting and a focusing operator. For 1D vertical propagation, only the phase-shifting
operator has to be applied and the solution is WKBJ accurate. Extrapolation operators
are then derived by applying a periodic matrix continued fraction expansion to the

focusing operator.

Derivation of wide-angle approximations

Let’s consider the downward continuation of an upgoing wave travelling at the

vertical. The extrapolation operator in equation (11) simplifies and becomes:
D, = AY? jy A2 (14)

In this case, the downward continuation operator is a phase-shifting operator. At each

depth step, we solve the partial differential equation:
D, = 2y (15)
v
The analytical solution of this phase-shift equation is given by:

V(z+Az) = e ? VU(z) (16)

An integration with respect to the depth parameter z of the PDE (16), followed by

a time-inverse Fourier transform leads to:
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Z

wt+fTu;)-dzJ

0

J

Z(z

7/)("‘7‘3) = % Z(O)

(17)

which is the WKBJ solution for the pressure wavefield Y(t,z) as shown by Clayton

(1981). Therefore, the solution does produce the correct amplitude (for 1D vertical pro-
pagation) for both smooth and discontinuous velocity variations. The one-way wave
extrapolation operators do not incorporate the geometrical spreading. Neither do the full
scalar wave extrapolation operators, because they are derived from the 2D scalar wave

equation and the waves travel in a 3D media.

Following Claerbout (1976), we write the extrapolation operator as the sum of the

phase-shift operator we have previously described and the diffraction operator:

1/2

D, = A% ju AV AV (w4 ((jw)+ o DED, v )T ) AV (18)

The downward extrapolation of the state variable ¥ is then performed by solving

at each z-step two partial differential equations:

D,v = Iy (19a)
v
D,¥ = —RV (19b)

where the focusing operator R is defined by:
1/2
R :-Al/2(—jw+((jw)2+szHDzv]/ ]Al/2 (20)

Let us introduce the operator S by:

S = AR AV2 (21)
We define recursively the operator S by use of the finite periodic continued fraction
expansion:
1
S, = 7 ; n>0 5 S;=0 (22)
A+ ——
B + Sn—l

With a slight change shown in the appendix (A-1), this periodic continued fraction
1s seen to be the matrix analog of Stieltjes (1894) “preferred continued fraction” Another
point is that this expansion is generated by impedance functions (Claerbout, 1976, 1983);
we will use this feature in the stability analysis.

The periodic continued fraction used in this paper is related to the continued frac-

tion expansion first used to approximate the square root (equation [13]) by the fact that
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each order of the periodic continued expansion corresponds to an even order of the other

one.

The point is that, in the frequency domain, the odd orders of the continued fraction
expansion have the same computation cost as the next higher even order. Therefore,

there are never used to build extrapolation operators in that domain.

The Raphson-Newton recursive relation (Dubrulle, 1983) also gives a mean to
approximate the square root. This scheme generates approximations which converge qua-
dratically to the square root and one could think that it gives better approximations

than the periodic continued fraction expansion.

This scheme is never used because either it matches an approximant of the recur-
sive relation defined in equation (22) (that is the case of the 45-degree approximation as
mentioned by Dubrulle, 1983), or it does not but in this case, the similar (in a computa-

tional cost point of view) approximant of the periodic continued fraction expansion is

more accurate.

We now relate the periodic continued fraction with the matrix fractional transfor-

mation that generates it:

A -
BT (23)

The fixed points of this transformation are defined by:
F(S) = &S (24)

This equation has in general two roots S and S5, which are solutions of the

matrix quadratic equation:

s2yBs-4A — o (25)
B
The above equation has been derived for matrices that commute; we will verify it
after computing the matrices A and B. The roots of equation (25) are:

1/2

_ B? B
Sy, = -1/2B - | &= + =2
o / [ 4+4A] (26a)
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B B 1/2
S& = -1/2B —_—+ — 26b
LR By (26)
The values of the matrices A and B are determined by comparing, the value of S
given in equation (21) (where the operator R is defined in equation (20)), with the
desired value of the operator; this value is for the downward continuation of an up-
coming wave (equation (21a) ):
- . 2 H 1/2
Se =+]w—((jw)+vD, D:,v) (27)
From equations (26a) and (27), we get:

_ 25w _ .
AT = ——— | B~ = 2jw 28
v DH v (28)
Similarly, the desired value of the operator for the downward continuation of a downgo-

ing wave is:
+ : - N2 H 1/2
S& — —jo + ((ju)+v DED, v ) (29)

The matrices A* and B" are the same as in equation (30), but with an opposite sign. In
both cases, it is obvious that the matrices A and B commute because the matrix B is

the matrix unity / multiplied by a constant.

Because the matrix transformation defined in equation (25) is a linear fraction
transformation, reversing the scheme is achieved by simply changing the signs of the

matrices A and B.
The demonstration of the convergence of the periodic continued fraction in the pro-
pagating region (i.e., when | K, | Sﬂ) is made in appendix (A-1). The point is that we
v

can use the convergence theorem of periodic continued fractions (Wall, p. 35, 1948).
First, when there is convergence, the limit is one of the fixed points of the transforma-
tion defined in equation (23); and second, when the recursive relation is generated by the

matrices A~ and B7, the limit (if there is one) is S~ (and there is a similar result for A *
and BY).

In practice, only the two first orders of the recursion defined in the equation (23),
approximants called the 45- and 65-degree approximations of the square root, are used in
the extrapolation processing of seismic data. The important element is not the conver-
gence of the recursive relation (23) itself, but instead the fact that its two first approxi-

mants provide sufficiently accurate approximations of the focusing operator.
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In Figure 1 are shown the group velocity parametric curves for the 45-, 65-, and 80-
degree (third order of the recursive relation) approximations of the square root. These
curves represent the theoretical wavefront of waves generated by a point source in a
medium with constant velocity. These wavefronts are inscribed within the semi-circle

that is the curve of the group velocity vector for the correct dispersion relation.

As described by Claerbout (Imaging the Earth’s Interior, section 4.2), the evanes-
cent waves are below the semi-circles that indicate waves propagating laterally. We
derive these parametric curves in the appendix (A-2) and show, as according to Claer-
bout (1983) that the extrapolation operators are not frequency dispersive (things are

worse) but instead angle dispersive.

These group velocity parametric curves (Figure 1) show first, that the 65-degree
approximation is more accurate than the 45- one for angles greater than 45-degree; and
second, that the 80-degree approximation (third order of the recursive relation (23)) is

slightly better than the 65- one.

A dip filter presented in the next section, also enables to improve the accuracy of
the extrapolation operators, ie., to better match the dispersion relation. In practice, we
will show how the 45-degree approximation can match the dispersive relation of the 55-
degree approximation in the propagating region (third order of the continued fraction
expansion of the square root). Similarly, the 65-degree approximation will match the

dispersive relation of the 80- degree one.

Evanescent waves and dip-filtering

The mathematical extrapolation of seismic waves back in time gives rise to evanes-
cent waves because we downward extrapolate the wavefield with a square root operator,

lLe. a one-way wave equation instead of the full wave equation (Claerbout, 1976, 1983).

Figure 2 shows two impulse responses corresponding to the downward continuation
of a spike in a constant velocity media with respectively the 45- and 65-degree extrapola-
tion operators. These evanescent waves don’t give rise to stability problems when

appropriate boundaries are used (see the section “Stability and absorbing side boundary

conditions”’).

Nevertheless, they are highly undesirable in this processing because they would give
rise to migration artifacts and deteriorate the quality of the migrated section. When run-
ning a movie modeling the downward continuation of a wavefront generated by a spike
on Claerbout’s computers, we realized that these evanescent waves do follow the wave-

front and seem to propagate.
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The point is that, although these waves are well known not to propagate because
they attenuate on a short distance, the extrapolation operator generates constantly

evanescent waves at each z-step extrapolation and they do seem to propagate.

The filtering of these waves is therefore a requirement to build accurate extrapola-
tion operators. The full wave migration (Baysal and Kosloff, 1983) also requires a filter-
ing of these waves but for another reason. Here, it is an imperative to filter these waves
to guarantee the stability of the scheme itself. They eliminate these waves by laterally
Fourier transform the wavefield at each z-step extrapolation and for each frequency and

then simply select the appropriate wavenumbers.

This expensive method is avoided in our method by implementing a filter inside the
extrapolation operator itself and at no cost. Claerbout (1976) first implemented such a
filter in the 15-degree extrapolation operator. He also described the decomposition of the

45-degree equation into effects (1982).

The elimination of the evanescent waves, a dip filtering and a better approximation

of the dispersion relation is done by simply implementing a causal function (jw )'72
inside the recursive relation which generates the periodic continued fraction. We modify

the recursive relation (equation (22)) as following:

g 1 1

nil = T ; 51 = 7 n >0 (30)
A+ — A4 —
B+ 5, 71(1“’)723

where v; and 7, are two positive real numbers. Kjartansson (1978) has demonstrated
that the function (jw )'72 is causal. This function is related to the quality parameter @
which described the seismic attenuation in sedimentary rocks. Therefore, it is natural to
use such a function for the attenuation of the evanescent waves. What is really a nice
feature of this causal function is the fact that it does not modify the causal properties of

the operator S, defined in the equation (30).

This is immediately verified by first, noticing that the operator B can also be writ-
ten in a similar form than the dip filter function and second, that the product of two
exponentials is an still an exponential. Thus, Kjartansson proof applies and the operator

71 (jw)" B is a causal operator.

Here, the causal function is multiplied by a positive real number v9. This does not

modify the causal property of (jw)™ and provides a second degree of freedom which

enables us to improve the accuracy of the approximants (equation [30]) to the dispersive

relation.
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Practically, the two orders of interest for our seismic data are the two first approxi-
mants generated by the recursive relation (30). The choice of the parameters ~; and Yo s

discussed in detail in the section “Numerical Implementation”.

Two impulse responses generated by the 65-degree extrapolation operator are
shown in the Figure 3. One of them (Figure 3a) uses a dip filter which removes the
evanescent waves and improves the accuracy of the operator which matches the disper-

sion relation up to 80 degrees.

We show in Figure 4 how the parameter 41 improves the accuracy of the operators.
The 45-degree approximation matches the dispersion relation of the 55-degree one while
the 65-degree approximation becomes accurate to 80-degrees. That is the reason why the
two first orders of the periodic continued fraction are the operators of interest for the

processing of seismic data.

DEPTH EXTRAPOLATION PROCEDURE

We present the downward extrapolation procedure of the state variable. At each z-
step extrapolation, a phase-shift operator and a focusing operator are applied to the

state variable. The focusing operator is split in 45-degree type focusing operators.

Ma Zaitian (1981, 1983) derives extrapolation operators by splitting the time extra-
polation operators in 15-degree type extrapolation operators. These operators will be
defined in the section “Derivation of the Continued Fraction Expansion”. In the fre-

quency domain, the operators of interest are the 45-degree type extrapolation operators.

The equations to solve at each z-step are (equation (19a) and (19b)):

D,V = %y (31a)
v
D,V — _R ¥ (31b)

The downward extrapolation procedure is first to solve analytically the equation

(31a) and then to solve the equation (31b) for the phase-shifted wavefield.

The equation (31a) is the phase-shift equation and its analytical solution is:
ﬂAz
vV = ¢? v (32)
Therefore, the phase-shift operator is the exponential operator defined in the equa-
tion (32). The advantage of splitting the extrapolation operator in the phase-shift and
the focusing operators is that the flat reflectors will be correctly migrated (Jacobs, 1983).

This not true for the migration with the full acoustic wave equation.
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The focusing equation (31b) is solved by applying a Crank-Nicholson transform
which leads to the following implicit scheme:

I—-‘:\‘Q—ZR
VY(z+Az) = —A—\Il(z) (33)
I+?Z-R

where W(z) is the state variable which has been phase-shifted, according to the equation

(32). The focusing operator R is then substituted by its approximation R, defined in
equation (21):

R, = A/tS, A (34)

In the above equation, the operator S, is defined by the recursive relation (30). In a
similar way than Ma Zaitian (1981) did to split the extrapolation operator in 15-degree
type operators, we first compute the partial fraction decomposition of S, to get:

nooa, S vDED, v
Sp = gqw ) 4. g TETE (35)
" i=1 bi,n +Sz : (]11))2
where @; , and b; , are functions of w because we have implemented a filter inside the
recursive relation (equation [30]). If we consider the case where n is equal to one (i.e. the

case of the 45-degree approximation), the equation (35) becomes:

a1 S,

S, = jw ——__
! ! byg+ S,

(36)

The above equation combined with the equation (35) shows that the operator S, is

the sum of 45-degree type approximations. We now replace the operator R in the equa-

tion (33) by its approximation R, and it yields:

J - JwAz Z") AL #JFS_; INZ
V(z4+Az) = — = - e W(z) (37)
T+ JWAZ NS yyp %in Oy
R A ——

The numerator and the denominator of the focusing operator defined by the above

equation are both split to give:

I _ ]wAz Al/g ai,n SI Al/g

V(z+Az) = ] . = z (38)
=1 ]U)Az 1/ ai,n Sz 1/
I+ A A
2 bi,n + Sz
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When n is equal to one, the above expression simplified and becomes:

I _ jw Az Al/g al,l SCC Al/e

2 bi1+ S
V(2 +Az2) = : AR (39)
I Jw Az AV a1 S, e
2 b1+ S,

which is the 45-degree focusing equation. In what follows, we will call the operator

defined in the equation (39) a 45-degree type extrapolation operator.

The equation (39) shows that the extrapolation operator of order n is split in n 45-
degree type extrapolation operators. More precisely, this is the focusing operator which is
split in 45-degree type focusing operators. In what follows, we will suppose that the state

variable is first phase-shifted and that the extrapolation operator is the focusing one.

Again, the operators of interest for our seismic data are the 45- and 65-degree
extrapolation operators. The first one is not split because it is a 45-degree type extrapo-
lation operator. Only the 65-degree extrapolation operator (second order of the recursive

relation) is concerned by the splitting described above.

This splitting has the nice feature to enable us to code only a 45-degree type opera-
tor to derive higher order operators. As shown above, the 65-degree operator is split in

two 45-degree operators while the 80- degree operator is split in three 45-degree one.

These 45-degree operators differ only by the coefficients @; n and b; ,. Another
point is that the procedure without splitting would require the solution of pentadiagonal
systems for the 65-degree operator and larger systems for higher order operators. With
the splitting, we only have to solve tridiagonal systems as shown in the section “Numeri-

cal Implementation”.

The Crank-Nicholson transform has been used because it first enables us to stabil-
ize the scheme and second provides a better accuracy (Claerbout, 1976). It gives a
scheme accurate to third order in Az when there is no splitting of the focusing opera-
tors. One can think that the splitting affects the accuracy and that the accuracy is to

second order in Az when one splits the focusing operator in 45-degree type operators.

This is not the case! It comes from the fact that we have applied the splitting on
both the numerator and the denominator of the focusing operator in the equation (38).
This important property of the splitting demonstrates in the appendix (A-2) comes from
the symmetry of the Crank-Nicholson transform. In laterally homogeneous media, the

splitting operator is even slightly more precise than the non splitting one.

This is shown in the Figure 5 which displays the impulse response of a point source

in a constant velocity medium with the 65-degree extrapolation operator split (Figure 1a)
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and non split (Figure 1b).

When we use a dip-filter to attenuate the evanescent waves, the split (Figure 4) and

non split 65-degree extrapolation operators give a similar impulse response.

Finally, the procedure is completely described by the implementation of the 45-
degree type operator. If we denote (OPi(") the 45-degree type operator whose coefficients
are a; , and b; ,, the equation (39) yields:

I . jw AZ Al/g ai,n SI Al/g
(OPi(")) _ . 2 b; n + 5, (40)
I + j’U)AZ AI/Z ai,n Sz AI/E
2 bi n + S,

First, the operator —DzHDz which represents §,,, second partial derivative with

respect to x, is approximated by (Claerbout, 1983):

1 T
6:6.’5 == Az2 I _ 6 T (41)

where the matrix T is the tridiagonal matrix (-1,2,-1) used to discretized the discrete

second partial derivative with respect to x.

Second, following Claerbout (1983), we will suppose that the velocity slowness A
commutes with 6,,. This assumption saves computational time because the slowness

matrix multiplies the operator §,, both to the right and to the left.

Again, one must remember the physics of the problem and not forget that the
extrapolation procedure downward continues the state variable ¥ by step Az more than

5 times smaller than the wavelength of the seismic waves.

Therefore, the velocity can be consider to be laterally constant on such small dis-
tances. Another point is that even if there is severe lateral velocity variations, the local

operators used in the procedure “almost” commute and no accuracy is lost.

Finally, an algebraic matrix manipulation shows that we can transform the opera-
tor (OP;(*) in the reduced form:

(42)

where ozi("), u") and )\,-(") are diagonal matrices and T;(") a tridiagonal matrix.
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Therefore, the main work is to solve tridiagonal linear systems.

We have not yet addressed the important problem of the stability. It is certainly
the most important one. Dubrulle (1983) and Brysk (1983) have demonstrated stability
proofs when one uses poor absorbing side boundary conditions, i.e. the zero-slope or

zero-value conditions.

The key point of their demonstration (Dubrulle, 1983) is that the eigenvalues of the
matrix T (defined above) are real positive numbers. This comes from the fact that the
matrix D is the hermitian matrix of D, when, again, poor absorbing side boundary side
conditions are implemented. When “sophisticated’ absorbing conditions are used (such

B1, B2 or B3 conditions), this becomes wrong and the scheme can be unstable.

The next section presents a sophisticated absorbing side condition and a stability

analysis related to it.

STABILITY AND ABSORBING SIDE BOUNDARIES

We first define z-data independent absorbing side boundary conditions and how

these conditions are implemented in the extrapolation operators.

Then, the stability analysis is closely related to the absorbing side conditions used
in the algorithm. A sufficient condition is given to guarantee the absolute stability of the
scheme. This condition is also a necessary condition when the velocity has no lateral
variation. We finally give the physical interpretation of this condition in terms of energy

coming in the grid and energy going outside the grid used in the finite difference scheme.

Virtual trace

The finite grid used for the extrapolation scheme requires absorbing side boundaries
to minimize reflected waves on the vertical edges of the grid. The trick is to laterally

extrapolate the wavefield and use a virtual trace at each vertical boundary of the grid.

Two kinds of lateral extrapolation have been designed by Jon Claerbout and his
Stanford Exploration Project team. These methods are a data-dependent absorbing side
boundary condition suggested by Clayton (Hale and Toldi, 1982), and a wave-field extra-
polation model (Clayton and Engquist, 1977, 1980).

We define z-data independent boundary conditions as the absorbing side conditions
derived from the lateral extrapolation of the seismic data, (John Toldi, private communi-
cation). Practically, this definition means that our stability analysis, which follows

below, is not relevant for the B2 and B3 absorbing side boundary conditions.
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The wavefield ¥ at the depth z is a vector whose dimension is nz, the number of
zero-offset traces or common midpoints we downward continue. Let us define V; and
V,, as the coordinates of the state variable W, respectively at the left side (and right
side) of the grid.

We call ¥, and ¥,, 4, the virtual traces used to absorb the energy going outside

the grid. These traces are related to the wavefield ¥ by:
\IJO = P1 \I/]_ (43&)
\I/nz+1 = Pnz \I/n:c (43b)

where the coefficients p; and p,, are determined by a lateral extrapolation algorithm.
The coefficient p is implemented in the left corner of the matrix D, , and the coefficient

Pnz in the right corner of DA

The discrete partial derivative D, with respect to the parameter x at the left verti-

cal boundary of the grid is:

v, - Y,
Dz \I/l — —_Az (44)

Replacing ¥, with its value given by the equation (43a), we get:

1-p,

D, ¥, = v 45
z 1 Az 1‘ ( )
Therefore, the matrix operator D, becomes:
1-p, ]
-1 1
. -1 1
D. — —_
g Az
-1 1
- _1 1-

And similarly for the coefficient p,, that is implemented in the right diagonal corner of

the matrix DJ.

The data-dependent absorbing boundary condition suggested by Clayton uses a
Burg prediction filter to compute these coefficients. The energy to be minimized is
defined by:

E(p;) = |‘I’2—P1‘I’1|2+|‘I’1—Pf v, |2 (46)

The minimization of the energy E (p 1) with respect to the coefficient p1 leads to:
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v, ¥
p1=2 21 2 9 (47)
| Wy |[“+ | ¥y |

And a similar relation can be derived for the right-side boundary coefficient. The physi-
cal feature of the prediction absorbing condition is that it adapts to the wavefield (Hale
and Toldi, 1982). Let us consider the case of a monochromatic plane wave whose angle

with the vertical axis is 6:

jw[ cosU!(?! s+ smu!ﬂ! - ]
a e

Y(z,z,w) = (48)
Combining the equations (43a) and (47) yields:
_jw sin (6) Az
\PO = € v \Ill (49)

This is the expected value of the wavefield according to the equation (48). The pitfall of
this method occurs when the reflectors dip upward toward the left side of the section.
The migration tends to move the energy into the section while the data-dependent
absorbing condition, adapting to the wavefield, lets the energy go inside the grid; these
conditions give rise to an unstable scheme. Similarly, when the reflectors dip downward
toward the right boundary, the data-dependent absorbing condition lets the energy enter

into the grid and also gives rise to an unstable scheme.

Therefore, the stability of the extrapolation scheme must be closely related with the
absorbing side conditions used. The next paragraph gives a condition upon the
coefficients p; and p,,, sufficient to guarantee a stable scheme in the case of z-

independent absorbing side boundary conditions.

Causal positive real operators

In this part, we demonstrate that a condition sufficient for a stable extrapolation is
that the operator — DzHDz be a causal positive real operator. A positive real operator is a

matrix whose eigenvalues have a real positive part. A causal operator is an impedance
function (Claerbout, 1983).

The extrapolation will be stable if the diffraction equation leads to a stable scheme.

For each z-step extrapolation, after a Crank-Nicholson transform, the equation to solve
is:
Y(z+Az) = ——= ¢
( ) o z (50)

I +=——R
+2 n
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where R, is the diffraction operator and n is the order of the periodic fraction expan-
sion of the square root. The Von Neumann stability criterion applied to the equation
(50) requires that each eigenvalue ~; of the matrix operator R, have a real positive

part.
The matrix B, is computed from the matrix S, by the equation (23). We rewrite it
as the following;:
R, = AY*S, AY* (51)
where the matrix S, is defined by the recursive relation equation (24). We first demon-
strate how the eigenvalues r; of the matrix B, and the eigenvalues s; of S, are related.

Let us consider a non-zero eigenvector V¥, of the matrix R, ; this eigenvector is

associated with the eigenvalue r,. We now use a very old mathematical trick that con-

sists of computing the dot product of <R, v, | V¥, > by two different ways. The dot

product <.|.> is the usual hermitian dot product associated with the complex space.

First, allowing the property of the vector ¥, to be an eigenvector of the matrix R,

leads to:
<Rn \I/r,, |\I/r,,> = rk‘ <\I,fk | \I,rl,> (52)

The second way is to project the vector A’/”\I/,k on an eigenvector orthogonal basis of the

matrix S, .
i=ng
A2, = 3 ¥, (53)
i=1
Then, we compute the vector S, A*/* vy,
t=nz
Sn Al/g \I/,.k — E S§; Qy \I/s.‘, (54)
i=1

The matrix AY* is an hermitian matrix (it is a diagonal matrix with real numbers)

?

therefore, we can compute the dot product as:
<R, ¥, |V, > = <S, AW, | AV, > (55)

From the equation (55), we get the second relation for the dot product:

i=nz
<Rn \I/r,; | \I/r,, > - E si | a1 | 2 <\IIS, | \Ilst > (56)
i=1

The substitution of the dot product in the equations (52) and (56) gives the relation

between the eigenvalue r; of the matrix R, and the eigenvalues of the matrix Sy
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i=nz o , | \I/s‘ I | 2 (57)
ry = E Si Iai I T a2
§==1 I | \Prk | |

Therefore, the eigenvalues of the matrix R, have a real positive part if the eigen-
values of the matrix S, have a real positive part. This is a sufficient condition, but when
the velocity has no lateral variations it is also a necessary condition, because the
matrices S, and R, are related by a real positive coefficient that is the inverse of the

velocity.

The next step is to relate the eigenvalues of the matrix S, to the eigenvalues of the
matrix DD, and the coefficients P1, Pny- The matrix S, is generated by the finite

matrix periodic expansion defined in the equation (24), and in the case of the downward

extrapolation is:

S, = (58)
B~ + -
In the equation (58), the matrix B~ is a diagonal matrix so that it shares the eigen-

vectors with the matrix A~. Therefore, the matrices S, and A~ share the same eigenvec-

tors. An eigenvalue sp, of the matrix S, is related to an eigenvalue d; of the matrix

VDHD, V by the same finite periodic fraction expansion used to define the matrix S, :

1
2w 1

= 59

S, A P (59)

We first notice that the complex number —2jw

has a real positive part if d; has a nega-
k

tive imaginary part. Both the addition and the inverse of complex numbers with a real
positive part still gives a complex number with a real positive part. Thus, the eigen-
values of the matrix S, have a real positive part if the eigenvalues of the matrix
VDED, V have a negative imaginary part.

We now relate the eigenvalues of the matrix VDED, V to the absorbing side boun-
daries coefficients p; and p,,. Let us consider a non zero eigenvector ‘I’dk associated with
the eigenvalue dy. We compute the dot product <VDED,V Yy | ¥y, > by two

different ways.

First, defining the property of the vector YV, to be an eigenvector of the matrix

VDHED, V yields:
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<VDHED, v Vg | W, > = & <V, | ¥y > (60)

Then, we rewrite the matrix VDIHDz V as a function of the matrix D, (where we set p,

to be zero) and the coefficients p; and p,, :

2 2

v v,
VDD,V = VD!D,V - p, - Iy~ Poz =5 L (61)

72
where the matrix I, has a coefficient equal to 1 in the left corner and zeros elsewhere,

the matrix I,, has a non zero-coefficient equal to 1 in the right corner and zeros else-

where; and D} denotes the transposed matrix of D,.

From the equation (61), we get the second relation for the dot product:

<VDD,V W, | ¥y > —

2 2
2 Vi 2 Ynz 2
| I Dz V‘I/dk | | D1 A.’L‘2 l \Ill,d,, | = Pns Az? | \Ilnx,d,, | (62)

The combinations of equations (60) and (62) gives the relation between the boundary

parameters py, p,, and the eigenvalues dj, of the matrix VDFD_ Vv :

I | D:C V\Pd‘: I | 2 p 1)12 | \I/l, d], | 2 p vni I ‘Ilnz, dk | ? (63)
k. T F1 -
| 1 ¥q || Az [ [P 7T A |y | |7

This relation places a condition on the coefficients pi and p,,, sufficient to guaran-
tee the absolute stability of the extrapolation scheme. The eigenvalues d; of the matrix

VD,HDZ V have a negative imaginary part if the following condition is verified:
’012 Im (p 1) | \Ill,d,, I ? + vnz Im (pnz) I \Ilnz,d,c ' ? Z 0 (64)

This equation is a condition sufficient to guarantee the stability of the extrapolation; this
condition is necessary when the velocity has no lateral variations. The physical interpre-
tation of this condition is that the energy entering to the section through one absorbing
lateral side must be compensated by energy going of the section through the other side.
Let us consider a plane wave travelling forward; i.e., from the left to the right of the

grid. From the equation (64) we get:

v sin[wasin(ﬁ)) | Wy, |2+ 0,2 sin[wasin(G)J | Ve, |2 > 0 (65)

LT nz
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The stability condition to downward continue a downgoing wave is the same as in

the equation (64) but with an opposite sign because we use a negative frequency.

The absorbing side boundary conditions used to generate the different examples
shown in this paper are either data-dependent (Burg prediction filter) or data-
independent. When the data-dependent condition yields to an unstable scheme, we use
instead the lateral extrapolation operator D, to determine the coefficient p,. If we

assume a wave propagating in the x direction, the extrapolation equation becomes:

D, = Jw (66)

Therefore, after a Crank-Nicholson transform, we get:

1+—”2”M
U1
Y, = — 1 g 67
0 | _ JwAs 1 (67)

2'Ul
A similar result can be found for the left side boundary. This relation can be used in the
case of the downward continuation of a downgoing wave if a negative frequency w is
used instead of a positive frequency. According to the stability criterion given by the
equation (64), the absorbing side boundary condition given by the equation (67) is

unconditionally stable.

In the Figure 1, this mixed technique of using absorbing side boundary conditions is
tested for the 65-degree extrapolation operator. The comparison with the results given
by the zero-slope condition demonstrates that the boundaries become transparent when
one uses the mixed technique. Physically, the boundaries are one-way transparent

because the energy can go outside the grid but can’t come back inside the grid.

There is still a problem one encounters in the implementation of this data-
dependent boundary condition. It comes from the computation of the coefficients p1 and
Pn; themselves. When the denominator in the equation (47) is very small, we don’t use
this equation to determine the coefficient p; but instead use the zero-slope condition or

the condition given by the equation (67).

We compute the maximum of the energy of the wavefield on a trace of the stacked
section at the beginning of the migration program and if the denominator in equation

(47) is less than 0.001, we don’t apply the Burg prediction filter but instead the equation

(67) or the zero-slope condition.

Finally, we have related the eigenvalues of the diffraction operator to the absorbing

side boundary coefficients. The stability of the extrapolation scheme requires that the
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energy going outside the grid by one side of it is greater than the energy entering in the
grid by the other vertical boundary. When this condition is not satisfied, we use instead

the zero-slope or B1 absorbing conditions, which are unconditionally stable.

This analysis gives a criterion to guarantee the stability of the extrapolation
scheme, when the absorbing condition can be implemented in the corners of the matrix
T; ie. in the case of z-independent absorbing side boundary conditions. This criterion
can not be applied to the B2 and B3 absorbing conditions because they involve deriva-

tives with respect to z.

NUMERICAL IMPLEMENTATION

We emphasize in that part the implementation of the 45- and 65-degree extrapola-
tion operators, which are the operators of interest for our seismic data. We test the per-
formance of the 45-degree operator on a synthetic zero-offset section and a field data

stacked section.

Most of our stacked seismic data has dipping steep beds less than 60 degrees and
therefore, the 45-degree operator will migrate accurately these zero-offset sections. The

loss of precision (Brysk, 1983) comes from the sparse sampling of the midpoint axis.

The 65-degree operator has been derived for the pre-stack migration of profiles. In
accordance with Jacobs (1983), offset angles in a shot profile can be high, even if the dip
of the reflector is small. In that case, the shot profiles (and eventually the receiver

profiles) are downward continue with this wide-angle operator.

We will compare the computational cost and the accuracy of phase-shift plus inter-
polation, full scalar wave equation and finite difference operators in the space-frequency

domain.

A method which saves 50% of the computational cost for both the migration by
the full scalar wave equation, and the migration by finite difference, is briefly presented.

It also saves 50% computational cost of the pre-stack migration of profiles.

Synthetic examples

The synthetic zero-offset section used in this paper to test the 45-degree operator
has been generated by the program syns83 (Cerveny and Psencik, 1983). The velocity

model has both severe lateral and vertical velocity variations as shown in Figure 6.

The zero-offset section shown in Figure 7 has been generated by point sources and
has no converted waves. The 3D geometrical spreading and the attenuation due to the

reflection coefficients have been included. The reflectors below the dome have small
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amplitudes because of strong reflections on the first flat bed.

The synthetic section has 500 common depth points, the time sampling is equal to
5 ms, the intertrace Az to 20 meters and the frequency bandwidth extends from 5 Hz to
75 Hz. An important point is that the modeling program syns83 does not generate

diffractions at the corners of the reflectors.

The parameter Az uses for the extrapolation is equal to 5 meters. The depth
migrated section, extrapolated with the 45 degree operator, is shown in Figure 8. As
expected, the absence of diffractions in the modeling program, gives rise to migration

artifacts on the corner points of the synthetic section.

The edges of the migrated salt dome have moved laterally to their correct subsur-
face location. The lateral displacement of time patterns by the depth migration pro-
cedure, is an important feature of the downward extrapolation in media with laterally

varying velocity. Here, this displacement is approximatively equal to 1 kilometer.

Again, this property of time patterns to move laterally toward their correct subsur-
face location can avoid wrong structure interpretations and enables the interpretators to

better determine the subsurface location of stratigraphic or structural traps.

The migrated reflectors below the dome and the first reflector have a weak ampli-
tude and are hardly distinguishable. It is because a too slight dip-filter has been used to
attenuate the evanescent waves, and therefore, these waves create migration artifacts
which weakens the accuracy of the migration. An other point is that we have depth

migrated a section where no equalization has been applied.

We then change the dip-filtering parameters ( v1=.7 as before, but v¥o=01 instead
of 0.05) and depth-migrated the zero-offset synthetic section after having equalized by a
Tpow time gain function. The synthetic section is now shown in Figure 9 while the

depth migrated section is shown in Figure 10.

First, a stronger dip-filtering gives a better migrated section because the artifacts
coming from, either a sparse lateral sampling, or the evanescents waves, are attenuated.
Second, the Tpow migrated section better shows that the reflectors below the dome and
the edges of the dome itself appear now quite clearly. Finally, no migration artifacts

come from the boundaries which are transparent to the energy going outside the grid.

The field data example is a stacked section of a profile recorded in Eastern-Nevada.
This profile has been shot in the Spring-valley Basin. The velocity model is shown in

Figure 11; it presents both severe lateral and vertical velocity variations.

The stacked section which is 7.5 kilometers long, has 500 common depth-points, a

time sampling of 4ms and the trace interval is equal to 15.2 meters. This zero-offset
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section is shown in Figure 12. It shows an dissymmetric basin, fault dips (normal faults)
to the East approximatively equal to 40 degrees, diffraction patterns and pull-up due to

the velocity of the structure.

The downward extrapolation has been achieved with the 45-degree extrapolation
operator, a Az step equal to 10 meters and a stronger dip-filtering than one used to
migrate the synthetic section. The depth migrated section is shown in Figure 13. The
West side diffraction patterns of the stacked section have been collapsed along the fault
dipping to the East side. The dissymmetry of the Basin is more clear on the depth
migrated section. The pull-ups have also been properly migrated to their subsurface loca-
tion. Also, the continuity of the reflector dipping to the East and starting below the
CDP 350 was not obvious.

The velocities model given by the conventional processing are the RMS velocities. It
means that we have a velocity model in the time-midpoint coordinates while we need the

interval velocities in space-midpoint coordinates to do the depth migration.

This paper does not address the important problem of the determination of these
velocities. Briefly, the velocity model shown in Figure 11 was first estimated by the use
of the Dix formula. It maps RMS velocities in depth-midpoint velocities. We then used
Stolt migration method to collapse the diffractions of the stacked section, and therefore

improve the accuracy of the velocity model.

A METHOD TO HALVE COMPUTATION TIME

In this part, we do not address the trick, that is to increase the depth extrapolation
parameter Az with the depth (this is done by using the property of the velocity to
increase with the depth), but instead a more fundamental feature of the depth migration

in the frequency domain.

In accordance with Schultz et al (1980), if you downward continue in depth the
stacked section up to a certain depth, and then come back in the time domain by the
use of a Fourier transform on each trace, you get a time section which has the same

number of time samples than the zero-offset at the earth surface. But here, only a part

of the data is relevant.

If the depth migration has reached a depth such as for example only 512 time sam-
ples are relevant out of 1024; ones comes back in the frequency domain by performing it

only on these samples, and then restarts the depth migration by downward continuing

only 2 times less frequency.
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In practice, this trick is used two times and save approximatively 509 of the whole

computational cost.

Finally, the numerical analysis of Dubrulle (1983) shows that the 45-degree extrapo-
lation operator has the same computational cost than the phase-shift method. The trick

above makes still our extrapolation operators more attractive.

The migration by the full wave equation (Kosloff and Baysal, 1983) solves a
Runge-Kutta algorithm at each z-step extrapolation and for each frequency. In order to
stabilize the scheme, they do also two Fourier transforms in the lateral direction, opera-

tion which is quite consuming and makes their method less attractive.

In accordance with Larner et al (1977), the relative merits of these three methods
(and the others) are no more the current debate. The most important issue is the proper
treatment of velocity. It determines the precision (as defined by Brysk, 1983) of the

migration result itself.

DERIVATION OF THE CONTINUED FRACTION EXPANSION
FROM THE SCALAR WAVE EQUATION

The paraxial equation

Claerbout (1976) extracts the 15-degree equation from the scalar wave equation by
transforming this equation in the retarted coordinate frame and canceling the second

derivative with respect to the depth.

In his coordinate frame, 2 =z and t —¢ + ﬁ, the scalar wave equation
v
becomes:
82 82 2
AL AN ,+i‘92=0 (68)
2 92 dz At 2 oz

2
Canceling the term (9, 5, Claerbout found the scalar wave paraxial equation:
oz

2 2
dz Ot 2 9z

=0 (69)

In the frequency domain, this equation fits the first order of the focusing operator expan-
sion first introduced in reflection seismology by Muir. This expansion is generated by

the following recursion:

S v? 92
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while the focusing equation is:

) Jw [ v? 92
g Jv | 4 1+ 2 71
dz v * ’\/ * w? Jz? )

The analog of the paraxial equation in the frequency domain is to solve two partial

differential equations, which are the phase-shift equation and the 15-degree focusing

equation:
7] W
= = J¥ 72
dz v (722)
0 Jw S
—_ = J¥ 2 72b
0z v 2 (72b)

The analog of the equation (72b) in the time domain is the paraxial equation and the
analog of the equation (72a) is the phase-shift equation given by:

a 1 9
—_— = = = 73
0z v Ot (73)
When the velocity has only depth variations, the Claerbout coordinate transform solves
implicitly the equation (73) and therefore the remaining work is only to solve the 15-

degree equation.

The 45-degree approximation of the square-root first given by Claerbout (1976) in

the frequency domain was derived in the time domain by Stolt (1978) in three steps.

3
First, he multiplies the equation (68) by 6, , then cancels the term — and uses the
z oz
82
equation (68) to substitute the term — to get finally the 45-degree equation.
0z
3 v 3 v 3

< _r o ~ =0 74
9z at'’® 4 9z 9z? 2 9z2%t (74)

As for the 15-degree equation, this equation can be found by a Fourier inverse
transform of the second order of the Muir expansion. Finally, This suggests that the

Muir expansion can be derived from the scalar wave equation itself.

Derivation of the continued fraction expansion

We suppose that the focusing operator approximation is given by the recursive rela-

tion (equation [70]), up to the order n. At this order, the equation to solve is:

0 Jw
— = —F (S
2= 22 p(s) (75)
2
We multiply each side of the above equation by ai and compute the term Py by its
z z
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value given by the equation (68) in the frequency domain, i.e.:

9 _ 25w 3 &
822 v 0z 922

(76)

We then substitute the second order derivative with respect to z in the equation (75), by

its value given by the equation (76), and it yields:
3 9*

_ 2w gw 9 _ 7
[ 22-dres)| L - 2 (77)

We finally substitute the second order derivative with respect to the parameter x by its

w?
value —5, and we get:
02

(78)

which is nothing but the recursive relation given in the equation (3). Therefore, the
implicit expansion first used by Claerbout (1976), then Stolt (1978), Berkhout (1980),
and Ma (1980) to derive one-way wave extrapolation operators in the time domain is
exactly the same as the explicit expansion of the focusing operator in the frequency

domain.

Therefore, the strategy to derive extrapolation operators in the time domain is first
to build these operators in the frequency domain with the explicit expansion and then

come back in the time domain with an inverse Fourier transform.

One-way wave extrapolation operators in the time-space domain

The extrapolation operators in the frequency domain are split in 45-degree opera-
tors. The odd orders of the recursive relation given by the equation (70) are never used

because their computational cost in the frequency domain is the same than the next even

order.

In the time domain, the strategy is to split the extrapolation operator in 15-degree
operators as shown by Ma (1980). These operators involve only the first derivatives of
the wavefield with respect to the time and the depth. Therefore, a double Crank-
Nicholson transform with respect to the time and the depth can be used to stabilize the

scheme and improve the accuracy.
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We already know how to split a finite matrix periodic fraction expansion in 45-
degree operators. The partial fraction decomposition of this finite expansion is first cal-
culated (see the paragraph “Splitting in 45-degree type extrapolation operators”) as a
sum of 45-degree type approximations of the square-root. Then the extrapolation opera-

tor is split in 45-degree type extrapolation operators.

The procedure to build 15-degree extrapolation operators in the time domain is still
the same. The partial fraction decomposition of the approximant F, (S) of the continued

fraction expansion (equation [70]) is given by:

k==
2 ag S

Here, % stands for the integer part of this number. For even orders, say 2n, the above

relation shows that the 2n'® approximant is the sum of n 45-degree type approximants
(the coefficient c,, is equal to zero). For odd orders, say 2n+1, the corresponding

approximant is the sum of n 45-degree type approximants plus one 15-degree type

approximant.

Therefore, the decomposition of each approximant in 15-degree type approxima-

tions is achieved by expanding each 45-degree type approximation as the sum of two

partial fractions as following:

a v d? a 2 a2
Jw a8 _ _ 2vVh 937 2V/b 9’ (80)
v b+ S 0 . 0 .
v—~]w\/b_ v—+]w\/b_
Jz Oz

The partial differential equation associated with each 45-degree approximation is:

d  Jw a S

Jz v b+ S (81)

We then split this PDE into two PDEs by using the equation (80), and we get:

o _v_ 9
d 2Vb 022
FE E (822)
v — — jwVb
dz
a v 52
a 2Vb 9z?
% = " (82b)
v — + jw Vb
oz

Then, coming back in the time domain by an inverse Fourier transform we find the two

SEP-41



Wave field extrapolation 247

15-degree type equations which are:

2 2 2
J 4 v o i av d
0z Ot Vb 020z 26 9r2

(83)

Implementation of the extrapolation operators in the time-space domain

The first advantage of the equivalence of the Muir partial fraction (explicit) expan-
sion and the implicit expansion has been so far to derive extrapolation operators in the

time domain by the simple procedure we have described previously.

The second advantage is to modify the explicit expansion, still in the frequency-
space domain in order to improve the accuracy of this expansion. Following Jacobs
(1982), we modify the recursive relation given in the equation (70) by introducing a

parameter -y as:

Fom(S) = — 3 pys)— 2 9% 45 (84)
2 + Fi(S) v w? dz? -

where the matrix operator S has the same definition as before and the parameter v Is a
real positive number. In a way similar to what we did to improve the accuracy of the
extrapolation operators in the frequency domain, the parameter + enables us to build

more accurate approximations of the square root.

Figure 14 shows the group velocity parametric curves for the 15 (Figure 14a and
14b) and 55-degree extrapolation operators (Figure 14c¢ and 14d). Choosing equal to .92
transforms the 15-degree approximation in a 20-degree accurate one. The optimal param-
eter v for the 55-degree approximations is equal to .7 and the third approximant of the

recursive relation (84) becomes a 65-degree accurate operator.

In practice, it means that the implementation of the parameter ~ transforms the
three first orders of the recursive relation (84) in wider-angle operators and that is real-

ized at no computational cost.

The operators of interest in the time domain are the three first approximants of the
recursive relation (84). The trick used to improve the accuracy of these approximants
has no computational cost. The implementation of these operators is to solve alterna-
tively, at each time-step 15-degree type extrapolation operators. The numerical imple-

mentation of these operators has been described extensively by Claerbout (1976) and Ma
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(1981, 1983).

We assume that the velocity has only vertical velocity variations. Therefore,

Claerbout’s coordinate transform solves implicitly the phase-shift equation.

As noticed by Claerbout (1983), the solution of the phase-shift equation, for a
medium with laterally velocity variations, doubles the computational cost of the paraxial
wave solution. In that case, the finite difference method in the space-frequency domain is

used because the phase-shift equation in that domain is solved analytically.

CONCLUSION

The depth extrapolation of the wavefield by finite difference of the wavefield in the
frequency-space domain is achieved either by the 45- or the 65-degree extrapolation
operators. We have derived these operators by the use of a periodic continued fraction

expansion.

They are WKBJ accurate in the 1D vertical case and produce the correct ampli-
tudes for both smooth and discontinuous velocity variations. Splitting of this one in 45-
degree type extrapolation operators (at no loss of accuracy) leads to a unique code to

build wide-angle extrapolation operators.

These operators can use detailed velocity information and are built to handle both
complex structures and severe velocity variations. A causal dip-filter has been imple-
mented inside these operators at no extra computational cost. It enables us to remove

the evanescent waves, dip-filter high dips and improve the accuracy of the extrapolation

operators.

The stability analysis gives a condition sufficient to guarantee the stability of the
extrapolation scheme. Data-dependent absorbing side boundary conditions have been
implemented inside the operators at no extra computational cost. This is equivalent to

one-way f{ransparent boundaries.

We have shown how to save 50% of the computational cost for the migration by
the full scalar wave equation and the migration by finite difference. Our method, which
takes advantage of the low cost of the fast Fourier transform, also saves 509 computa-

tional cost of the pre-stack migration of profiles.

The extrapolation operators can be used for the pre-stack migration processing
both to downward continue the shot profiles and the receiver profiles. We have shown

that our finite difference method compares favorably with the phase-shift plus interpola-

tion method.
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We have demonstrated the equivalence of the implicit expansion of the scalar wave
and the continued fraction expansion of the square root to derive one-way wave extrapo-

lation operators.

The wide-angle extrapolation operators do not separate in the 3D case and there-
fore, one must use the phase-shift plus interpolation method to downward continue in

the wavefield depth.
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