207

Footnote to parallel x-t migration

Stewart A. Levin

INTRODUCTION

In SEP-38 1 described a highly parallel method of performing finite-
difference migration in the space-time domain. [mentioned that explicit migra-
tion further decoupled computations along the spatial axis which might poten-
tially reduce migration times to acceptable interactive speeds. A recent discus-
sion of parallel algorithms with Gene Golub reminded me of an algorithm that
is used for solving tridiagonal equations, and which lends itself to spatial paral-

lelism as well.

FGDP ALGORITHM

The usual way we solve a tridiagonal system in migration is discussed in
Claerbout’s FGDP. Describing our system by the four vectors A B,C,D, where

the system of coefficients is given by

by ¢, dy
aq b2 Co d2
as b3 Ca d3

L | bn -1 Cn-1 dn -1
an bn dn

we use the first row to eliminate a, from the second row. We then use the
new second row to eliminate a3 from the third row, and so on. This leaves us

with an upper bidiagonal system of the form

I e Y
1 €o f2
L e3 I3

1 €n-1 fn—l

1 In

208 Levin

which can be solved by back substitution in the opposite direction.

This is a serial algorithm: the results from the previous row are needed to
reduce the next row. It is also an efficient algorithm: the number of computa-

tions grows as O(n) (1 division and 3 multiply-adds per element).

A MORE PARALLEL ALGORITHM

An alternative algorithm is based on nested bisection. It is described in
Hockney and Jesshope (1981) as (one form of) cyclic reduction. Hockney
developed it in collaboration with Golub. In outline: divide the equations (rows)
and the unknowns (columns) of a tridiagonal system into even and odd indices.
Use the even-numbered equations to eliminate the even-indexed unknowns from
the odd-numbered equations. The result, I derive below, is a tridiagonal subsys-
tem of half the size of the original system. Apply this procedure to that new
system to produce another subsystem one quarter the size of the original system.
Repeat until a one by one system is reached. Solve this trivial system and

back substitute until the original system is solved.

Derivation

Write out the tridiagonal equations algebraically

G %y + bz + Ty = 4)
and introduce the new variables w; = =z, and u; = Zg; 1. Take three suc-
cessive equations
@o; Ui+ by w; + oy u; = dy;
@oit1 W o baip oy o Wi = dg; 11
Aoiye U o o baiye wi + Cgiye Uy = doi o
and eliminate the w’s from the middle equation to get
@ 2i+192i @2i+1C 24 C2i+102i +2 € 2i+1C 2i 42
[——b‘— g+ ooy - p - B u; + T |
2 2 2i+2 2 42
— 4 @g;11d 9 €oi 18 2; 42
= 241 5 - 5
2 2i +2

SEP-41

Footnote to parallel z-t migration 209

This is a tridiagonal system in the u’s. After solving it, rearrange the third

equation to get the formula

o dgigg @912 € 2i+2
wy = b T3 U - B Wi
2 +2 2i +2 2 +2

for the remaining unknowns.

Example

Let’s work a numerical example. Suppose the original system is

20 -1.0 1.0
-1.0 20 -10 -1.0
-1.0 20 -10 1.0
-1.0 20 -1.0 2.0

-1.0 20 -10 -1.0

-1.0 20 -10 0.0

-1.0 20 -10 1.0

-1.0 20 -1.0 3.0

-1.0 20 -1.0 3.0

-1.0 2.0 -1.0

First we reduce this to

1.5 -0.5 0.5

05 -1.0 0.5 0.5

-0.5 1.0 -0.5 1.5
05 -1.0 0.5 -1.0

-0.5 1.0 -0.5 0.0

05 -1.0 0.5 0.0

-0.5 1.0 -0.5 2.5

05 -1.0 0.5 -1.5

-0.5 1.0 4.0

05 -1.0 0.5

SEP-41

210 Levin

From this we extract the new tridiagonal subsystem

1.5 -0.5 0.5
-0.5 1.0 -0.5 1.5
-0.5 1.0 -0.5 0.0

-0.5 10 -0.5 2.5

-0.5 1.0 4.0

Again eliminate even-indexed variables from odd-numbered equations to get

1.25 -0.25 1.25
0.5 -1.0 0.5 -1.5
-0.25 0.5 -0.25 2.0
0.5 -1.0 0.5 -2.5

-0.25 0.75 5.25

and extract the subsystem

1.25 -0.25 1.25
-0.25 0.5 -0.25 2.0
-0.25 0.75 5.25
Reduce this in turn to
1.125 -0.125 2.25
0.5 -1.0 0.5 -4.0
-0.125 0.625 6.25

and extract the subsystem

1.125 -0.125 2.25
-0.125 0.625 6.25

SEP-41

Footnote to parallel z-t migration 211

This we reduce to

1.1 3.5
02 -1.0 -10.0

and we finally extract

1.1 3.5

with solution 35/11’ths.

Appendix A lists a computer program that uses this method to solve tridi-
agonal equations on an FPS array processor. Just as the FGDP serial method
described earlier, this alternate tridiagonal algorithm require O(n) arithmetic
operations. Its drawback is that it requires more arithmetic (1 division, 11 mul-
tiplies and 6 additions) per point than the FGDP solution. Its advantage is
that the vector calls are the operations that could be done in parallel. Thus,
using the bisection algorithm on a parallel machine, the tridiagonal equations can
be solved in 2log,n serial steps* as opposed to the 2n serial steps needed for
the FGDP algorithm. The speedup factor is n /logon. For a 1024 trace section
this factor is just over 100, about one-fifth of the parallelism for explicit migra-
tion of these data but still well within the range of interactive migration

(perhaps 1.5 sec/mig; see SEP-38).

AN EVEN MORE PARALLEL ALGORITHM

This variant of cyclic reduction, termed PARACR in Hockney and Jesshope,
applies the above reduction to all indices, not only the even indices, and defines
(a,b,c,d) = (0,1,0,0) for subscripts less than 1 or greater than n. Reduction
results in another set of n three-term equations half of which are the n /2
equations from the cyclic reduction algorithm I described earlier. Continuing the

reduction for skips of 4, 8, 16, etc. we arrive after logen steps at a set of n

* and possibly fewer. If the system that we are solving is diagonally dominant, we can normalize the equa-
tions so that & is identically 1 and we see that the normalized off-diagonal elements of the halved system are
approximately equal to the squares of the normalized off-diagonal elements of the original system implying
their magnitudes decrease very rapidly (geometrically) towards zero.

SEP-41

212 Levin

equations involving z;, #;_,, and 12;,,. Because the latter two values (being
outside the subscript range 1,..,n) are zero the resulting system is diagonal. At
this point simply divide by the diagonal elements to produce all the z;’s. The
earlier cyclic reduction algorithm only solves for one unknown at the correspond-
ing point. In other words, the tridiagonal system has been solved in half the

number of serial steps of the previous method.

Interestingly, this algorithm though fastest on a parallel machine, requires
O (nlogn) floating point computations, so it is less efficient in a serial computer
than either of the previous O(n) methods. It attains its power on parallel

architectures by follows all branches of the reduction simultaneously.

CAVEAT

Parallelism is never infinite in actual architectures. Hockney and Jesshope
give first order descriptions of a machine’s actual parallelism in terms of Ny,
the vector length for which the algorithm attains half its asymptotic efficiency.
When vector lengths are >> n,, the machine’s resources are saturated and
the execution times function like those of a serial machine. When vector
lengths are << n,, the machine mimics an infinitely parallel device. Typical
n,, 's are around 2 for the FPS-120B, 10 for the CRAY-1, 100 for the
CYBER-205, and 1000 for the ICL DAP (a distributed processor array). There-
fore with the parallel machines currently in use it is impossible to take advan-
tage of all the possible parallelism I have proposed for finite difference migra-

tion.

CONCLUSION

In SEP-38 I showed how to introduce a high degree of parallelism into con-
ventional time-domain finite-difference migration algorithms. 1 have briefly shown
in this note how parallelism may be even further advanced for implicit schemes

as well as explicit schemes.

REFERENCES
Claerbout, J.F., 1976, Fundamentals of geophysical data processing: McGraw Hill,
188-189.
Hockney, R.W. and Jesshope, C.R., 1981, Parallel Computers: Adam Hilger Ltd,
286-289.

SEP-41

Footnote to parallel z-t migration 213

Levin, S.A., 1984, Parallel space-time migration: SEP-38, 207-214.

APPENDIX A. TRI PROGRAM LISTING

This subroutine solves tridiagonal equations using the algorithm outlined in

the text. Note that the signs of a and ¢ are reversed from those in the text.

[##x+x+ TRI = (real) tridiagonal solver (VFC version) *xk A
/*
call tri(a,i,b,5,¢,k,d,l,n)

solves Tx=d where tridiagonal matrix has the form

| BO-CoO

| ~Al B1-C1

| -A2 B2 -C2
~A3 B3-C3

Answer overwrites ' *d” . All inputs will be overwritten
during calculation. A0 and Cn-1 will be modified.

A and C may not be equivalenced.

SEP-41

214

Levin

Algorithm separates system to be solved into even and odd numbered equations.
The odd numbered equations are used to eliminate the odd index variables from
the even numbered equations. The result is a tridiagonal system of half

the original size for the even index variables. This is recursively subdivided
until the system reduces to a single equation. This equation is solved

and recursively back-substituted for the odd indexed variables.

Y

tri(a,i,b,j,c,k,d,1,n) tre

int a,ib,jck,dln;

{

int api,bpj,cpk,dpl; /* second element of wvector */
int a2i,b2j,c2k,d2l; /* third element of vector */
int nodd,nml; /* number of odd/even indezed equations */

int nO;

n0 = n; /* save so we know when to exit */
if(n>1)
goto reduce;
svdiv(b,j,d,d,l,n); /* else z = d/b */
return;

reduce: nodd = n/2;

n = n — nodd;
nml = n-1;
api = a-i;

bpj = b+j;
cpk = c+k;
dpl == d+];

a2l = api+i;
b2j = bpj+j;
c2k = cpk+k;
d2l = dpl+];

SEP-41

Footnote to parallel z-t migration 215

=< <1; /* double vector increments */
=1<<1

k=k < <1;

l=1<<1;

#define TMONE 04001
tmmov(TMONE;a,1); /* fetch 1.0 from table memory */
svdiv(bpj,j,a,bpj,j,nodd); /* 1/b(2j+1) */
vmul(bpj,j,api,iapi,inodd); /* a(2i+1)/b(2+1) */
vmul(bpj,j,cpk,k,cpk,k,nml); /* ¢(2+1)/b(25+1) */
vmul(bpj,j,dpLLdpllnodd); /* d(2l+1)/b(2+1) */
vneg(b,j,b,j,n);
vma(a2i,i,cpk,k,b2j,j,b2j,j,nm1);
vma(c,k,api,i,b,j,b,j,nodd);
vneg(b,j,b,j,n); /* new b diagonal */
vma(a2i,i,dpl,},d21,1,d2],},nm1);
vma(c,k,dpll,d L, d,L,nodd); /* new d vector */

vmul(a2i,i,api,i,a2i,i,nml); /* new a vector */

vmul(c,k,cpk k,c,k,nm1); /* new ¢ vector */
apmdout(bpj,nodd); /* save nodd on **stack”’ */
if(n>1)

/* trifa,4,b,5,¢,k,d,l,n); */ /* solve system half the size */

goto reduce;

svdiv(b,j,d,d,l,n); /* solve n=1 system: b = = d */
subst: nodd = apmdin(bpj); /* restore nodd from stack */

vma(api,i,d,l,dpll,dpll,nodd); /* back substitute solution */

vma(cpk k,d2]1,dpll,dpllnml); /#* of half sized system */

1= 1>>2

j=J>>%

k = k>>2;

1l = 1>>2;

n = n+nodd;

nml = nml+nodd;

SEP-41

216

api = api-i;
bpj = bpj-j;
cpk = cpk-k;
d2]1 = dpj;
dpl = dpl-];
1= i<,
] = 1<y,
k = k<<1;
1 = l<<1;
if (n < n0)
goto subst;

Levin

SEP-41

