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Wayve field extrapolation by
the linearly transformed wave equation operator

Zhiming Li

ABSTRACT

Many approximations of different orders of the one-way wave equation have been
suggested in seismic imaging or modeling. Of these approximations, the second-order
approximation, usually called the 15 degree equation, is most commonly used in industry
because of its high efficiency. However, all of these approximations have in common the

constraints of not being able to handle the large angle events exactly.

Through a linear transformation of the wave equation, one can obtain, without
approximation, the Linearly Transformed Wave Equation (LTWE) which exactly resem-
bles in form a 15 degree equation. The solution to the LTWE is still a two-way wave
solution. By imposing the upcoming (or downgoing) wave boundary condition, the
LTWE can be applied to seismic imaging (or modeling). Implementing the LTWE with
finite differencing algorithm gives an one-hundred-and-eighty-degree, or all-dip,
finite-difference wave extrapolation operator, which solves the angle limitation problem

in the conventional finite-difference methods.

INTRODUCTION

Most extrapolation methods used in seismic imaging (migration) and modeling, are
based upon wave equation theory. In a two-dimensional elastic earth model, the wave
equation is of the following form,

F*p P 1 8P (1)
dz% 022 v? 9t ’
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where P is wavefield, # horizontal coordinate, z depth, ¢t time and v velocity. The
extrapolation of wavefield along the positive z direction (migration) , or along the nega-

tive z direction (modeling), requires equation (1) to be changed into the one-way wave

equation,
o2 1/2
d 1 9 2 Oz’ o
Ei?-a—t 1—»1) _82 P —0, (2)
at?

where the positive sign is used in modeling, the negative in migration.

When solving the above second order differential equation, one must have not only
the boundary, or initial, conditions of wavefield itself, but also the boundary, or initial,
conditions of the first derivatives of wave filed. Unfortunately, these first derivatives are
presently not recorded in routine seismic surveys (Ma, 1982). Fourier domain extrapola-
tion algorithms, such Phase-shift and Stolt, eliminate the derivative requirement by
transforming the derivatives in the time-space domain into the polynomials in the
Fourier domain. With approximation, time-space (or frequency-space) domain extrapola-
tion algorithms, such as finite-differences, avoid the first derivative requirement by tak-
ing finite terms in Taylor’s series expansion (Claerbout, 1976), or using certain order of
Muir’s recursive expansion (Claerbout, 1982), of the square-root operator in the one-way
wave equation, and by imposing certain lateral boundary conditions, such as absorbing
boundary condition, as well as natural boundary conditions, such as the upcoming wave
boundary conditions. The finite-difference methods, especially in time-space domain, are
generally more efficient than the other methods, because their computational costs are
lower. Therefore, in routine seismic data processing, most industries use finite-difference

migration (FDM), especially time domain FDM.

Finite difference wavefield extrapolation in either time-spatial coordinates, (¢,z,z ),
or frequency-spatial coordinates, (w,z ,z ), is based on different approximating equations
obtained by either expanding the square root operator in equation (2), or by transform-
ing wavefield coordinate system, such as retarded coordinate transform or moving coor-
dinate transform. All the approximating equations replace the total operator in equation
(2) with finite terms of differentiation operators. The residual error in the operator
approximation is proportional to a certain power of sin(f), where 8 is angle of wave pro-
pagation (angle measured from vertical axis). Therefore, algorithms based on these
approximating equations are not accurate when applied to events with large propagating

angles. Taking more terms in the square-root expansion will increase the accuracy of
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extrapolating the events with large propagating angles. However, the computational cost

Increases significantly when higher order approximating equations are used.

The approximation most commonly used in industry is the second-order approxima-
tion of equation (2), usually called the 15 degree equation; when only the first two terms

in the square-root expansion are taken and the retarded coordinate transform is applied:

t! =t £ 2 /v,( + for migration, - for modeling), z/ = z and 2! — T, equation (2)
becomes:
d? v 0?
r P =0, 3
{az'at' 3 3112} (3)

where — is used for modeling and + for migration. It is easy to implement equation (3) in
(¢! ,2' 2! ) space using finite-difference, because the second-order ¢/ and z' deriva-

tives of P are not involved.

A nonsingular linear transformation of the coordinates can transform the last two

terms in equation (1) into a single cross-derivative term; ie.,

d? 8?
= 0
(507 + o 55w J = o )

where a is a coefficient that depends on the transform and v. This equation, without

approximation, is valid for all events with any propagating angles.

This paper presents the linear transformation that transforms the full wave equa-
tion into the Linearly Transformed Wave Equation (LTWE), which exactly resembles in
form a conventional 15 degree equation. A finite-difference algorithm of LTWE and some

computational examples are also discussed in the paper.

REVIEW OF CONVENTIONAL FINITE DIFFERENCE MIGRATION

There are several ways to get an approximating equation for finite-difference migra-

tion. We rewrite equation (2) as it is used for migration,

52 1/2

d 1 0 9 Oz2

5_?_87 1-v _82 PZO (5)
at?

The square root must be expanded and approximated by a finite number of terms,
if a finite-difference algorithm is to be used. Muir’s iterative expansion of the square root,

R = V1-X? is of the following form,
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1+ R, ’

2 2
where X? — v? 9°f0z” Ry=1.
8%/at?’

The Taylor’s series expansion of the square-root operator is,

82
1 0 v? Jz? .
R = — = 1- 5 + higher order terms - - - | . (7)
v
at®

Dropping higher-order terms in the square root expansion, we get the second-order

migration equation,

82
2 2
9 190 | v oz P — 0. (8)
dz v Ot 2 52
at?
Using the retarded coordinate transform: ¢/ = ¢ + z/v,z' =z and ' = z, equa-

tion (8) is transformed to the commonly used 15 degree migration equation:

d? v 92
(oo 3 30a) P = 0. g

Another way of getting the approximating equation for migration is to use a

retarded coordinate transformation, (Stolt, 1978)

)

xr = X
2l =z ) (10)
th =t +2/v

Plugging transform (10) into wave equation (1), we have

92 2 a2 H?
{6x’2+782'8t’ +8z'2}P = 0. (11)

Dropping out the second z' derivative term gives the same approximating equation as
equation (9).

These approximating equations have in common the dip restriction, because the
dropped higher-order derivative terms are important in characterizing the large angle

propagating events. One can obtain higher-order equations either by taking more terms
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in expansion, or by taking higher-order derivatives of z' in the retarded coordinate
wave equation and then dropping out the terms of higher derivatives of 2z’ . The higher
the order, the better the approximation in the migration of dipping reflections. However,
when the dip of the reflector exceeds 45 degree, the higher-order equations are difficult to
realize and the increased cost for doing so is very significant, though Ma’s splitting

methods can be used (Ma, 1982, and Jacobs, 1982).

We look for a proper transformation such that the resulting transformed equation
1Is an exact representation of the original wave equation and is also easily realized by

finite differencing methods.

THE LINEAR TRANSFORMATION
For a general quadratic form,

n
F(X) = E a,-jar,-xj- = X—IAX, (12)
i=1j7=1

’

there generally exists a nonsingular linear transform,
Y =L X, (13)
such that
n
F(X) = YULAL'Y = Y-'BY — by = G(Y), (14)
i=1
where G(Y) is a standard quadratic form.

Because L is nonsingular, we can transform G(Y) back to F(X) by the inverse
transform, X =LY .

Now, we are going to apply these concepts to the transformation of the wave equa-

tion. The two-dimensional full wave equation is,

P , *P 1 &P
dz? 922 v? 92

= 0. (15)

Let y,=0/0z , y,=0/3z , y5=08/3¢t , b;=b,—1, bs=-1/v?% the left side of equation

(15) becomes a standard quadratic form,

G(Y) = Y byt (16)

=1

We can find a nonsingular linear transform, X =LY, to eliminate y ¢ and y$, and
get a cross term zyr3, where 2,=0/9z' |, 29=08/9z' |, 2,—8/3t' . The resulting

transformed equation is of the following form,
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9’P a’pP

. —_— = 0 17
8x’2+a oz' ot'! ! (17)

where a is a coefficient determined by the transform coefficients and v .

The linear transformation is of the following form,

i —=
2! = ciz+dqt. (18)
t’ == C2z+d2t

Using the chain rule for derivatives, we get

o _ 9

Ox oz’

d 0 d

B i T (19)
0 d d

at 15,7 T Yy

Taking the second derivatives (square of first derivative) and substituting them into the

wave equation (15), we can determine the coefficients used in the linear transformation
by equating the coeficients in the left sides of equations (15) and (17),
cf —df/v? = 0
cd —dZ /v =0 . (20)
2C102— 2d1d2/1)2 == a

Equation (20) is a general constraint for the transform coefficients. When ¢ =1/V?,
dy=-v /V2, cy=1/(vV?2), and dy=1/V2, a special case of the linear transformations

(unitary when regarding vt and vt' as variables) takes the following form,

2! = 2z
o = L {z —vt} (21)
ﬁ b
to= L {z/v +t}
V2
the inverse transformation is,
z = z'
1 ! !
zz—ﬁ{z + vt } , (22)
1
t = — 1t -z Jv
A GIREY
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The resulting equation is, then

a*pP L2 a’pP

- =0 23
a.'z:'2 v 3z'8t’ ’ ( )

Equation (23) has been exactly transformed from full wave equation without any
terms having been dropped; it is one format of the LTWE defined in equation (17).
Therefore, there is no dip constraint upon using it for wavefield extrapolation. The
LTWE is, in format, the same as the conventional 15 degree type equation and is easy to

code into computer.

Another and easier way of deriving the LTWE can be obtained in the Fourier

domain. The dispersion relation of wave equation is, by 3-D Fourier transforming equa-
tion (2),

2

kP + kP2 =0, (24)
v
or,
kz2 + (kz + %)(kz - .“vi) =0 (25)
Let
w
kzl = kz + 7
) (26)
by, =k, - <
v
we get the dispersion relation of wave equation in (kzl,kz2,kz ),
k, + bk, k,, = 0. (27)

Transforming equation (27) back to (21,227), we can obtain one form of the LTWE

in equation (17) with @ = 1.
FINITE DIFFERENCING IMPLEMENTATION OF THE LTWE

The two solutions of the LTWE and the upcoming wave boundary condition

The LTWE is linearly transformed from the full-way equation. Therefore, it is also
a two-way wave equation: it handles both the upcoming waves and the downgoing
waves. In order to do migration, we must impose a certain wavefield condition to

separate the upcoming waves from the downgoing waves as much as possible.
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Let’s study the cross-derivative terms in both the LTWE and the 15° equation.
When the wavefield is independent of the horizontal axis as in the one-dimensional wave
propagation, both the LTWE and the 15 degree equations take the following form,

2
P _ 0. (28)
9€dn

The solution of equation (28) is, called D’Alembert’s solution,
P = o)+ ¥(n) (29)

For the LTWE case, £ = t+2 /v and 5 = t—2z /v. The solution of equation (28)

has both the upcoming wave solution ®(¢)=®(t+z/v) and the downgoing wave solu-
tion W(n)=W¥(t-z /v). Let

P t+z/v > T = 0, (30)

Then, the maximum depth where the wavefield can be recorded is Z max=vT nax - The
wave generated at this depth at ¢t =0 can only travel upwards ( 2 must decrease ) as
time increases, because of condition (30). Therefore, condition (30) is called the upcoming
wave boundary condition. However, the other energy generated at any depth z, above
Zmax can travel both upwards and downwards if At +Az /v +z, does not exceeds T nax
(Az >0 when traveling downwards, Az <0 when traveling downwards).

For the 15 degree migration equation case, the variables in equation (29) correspond

to: £ = t+z /v and 5 = z. The solution is,
P = ®(t+z/v)+¥(z), (31)

which is the sum of an upcoming wave solution (¢ 4z /v) and a time-independent func-
tion ¥(z). Therefore, the 15 degree migration equation eliminates the downgoing waves
completely by dropping off the higher-order terms in the expansion of the square-root

operator.

In two-dimensional wave propagation, P is also a function of the variable z . The
above reasoning for decomposing P into either an upcoming-wave solution or a
downgoing-wave solution will be still valid, when events are propagating with small
angles (as in a flat-layered medium) and when no reverberations are taken into account

(as in migrating primary reflections).

It will be shown in the later sections of this paper that imposing the upcoming
wave boundary condition with the LTWE, we will be able to extrapolate the reflection
data downwards to the reflectors without the requirement of knowing the first deriva-

tives of the wavefields.
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Finite-difference implementation of the LTWE migration

One of the important decisions in finite-difference techniques is the choice of boun-
dary conditions. In performing seismic migration, we start with surface data
P(t,z=>0,z) and migrate to get an image P (t=0,z,z), under the upcoming wave boun-

dary condition, P(t,z,z) b4z o> Ty = 0

In the new LTWE coordinate system, (¢/ ,z' ,z' ), these conditions correspond to
the following: data P(t' =t /V2,2" =t V22! =z); image
P(t' =z /(vV2),z' =2/V2,2' =z); and, the upcoming wave boundary condition,
P(t" >T 0/V2,2" ;5" )=0. The finite-differencing grids of the LTWE are shown in
Figure 1. The surface data lies along the line 2/ = —v¢' , while the image along

!

z! = ot’ . With the upcoming wave boundary condition, the data can be extrapolated

from the ¢ axis to the z axis to get the image. Figure 1 is also valid for using the
LTWE to do modeling. It turns out that the casuality conditions (with respect both to
t and z) of the wavefield should be used instead of the upcoming wave boundary condi-
tion, when the LTWE finite-difference algorithm is to be used in modeling. The LTWE
with the casuality conditions will give a stable finite-difference solution to the modeling

problem.

The physical interpretation of the LTWE is that the wave propagation can be
characterized by the LTWE if we rotate the coordinate (vt,z) by 45 degree. The rota-
tion does not change the orthogonality of the coordinate system, while the retarded coor-
dinate transform does change the orthogonality. Under the rotated coordinate (vt! 2",
the wavefield solution can be represented by the sum of two functions, with one func-

tion depends on (2/ ,z' ) only and the other depends on (t' ,z' ) only.

The geometrical interpretation of the LTWE is that it transforms a five finite
differencing star pattern in (¢,2) into a four finite differencing star pattern in (t" 2" )by
the 45 degree rotation. The four star pattern does not require the first derivatives of
wave field to be known, while the five star pattern does. The relation between these two

finite-difference star patterns are shown in Figure 2.

The finite-difference stars used in the LTWE are the same as in the conventional
15 degree equation migration (Claerbout, 1976), as shown in Figure 3. The finite
differencing in z' is chosen to be of the implicit form, because of the stability considera-
tion (Claerbout, 1982). The finite-difference star in the (t' ,z' ) plane can move either

upward or leftward. The resulting finite differencing representation of equation (23), in
the (¢! ,z' ) plane is,

[[+01T) Ptl PRV Y (I—OtT] {Ptl 2! +Pt’ +At 7' +AZ! }— [I+aT) Ptl +AL! ,21(32)
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z (imoges z’ = vt’)

N
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pcoming wave boundor*g\Lconditiont P(r’

4

(datas z’= -vt’)

FIG. 1. Finite difference in (¢’ ,2' ,z' ). The length of data is assumed to be 5 in the
figure. Data P(x,2=0,t) is placed at dg, dy, ... , d,. Image P (z,z,t =0) is obtained
at do, il) ceny 2.4.

where o= vAt' Az' /8Az' 2. The differencing operators, T = (-1,2,-1) and
I = (0,1,0), are applied along the z/ axis. The elements of the unknown vector in the
left-hand side of equation (32) are given implicitly by the elements of the three known
vectors in the right-hand side of equation (32). For each step of moving finite-
differencing star in (¢’ ,z' ), a tridiagonal-matrix-solver routine is called to get the
wavefield along the whole z! axis. It turns out that the computer algorithm using equa-
tion (32) is unconditionally stable (Mitchell, 1980). Finite-differencing stars in (¢h 2"

and (z' ,z' ) are shown in Figure 3.

A RATFOR (RATional FORtran) subroutine of doing LTWE migration is given in
the appendix of this paper.
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z
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FIG. 2. Finite difference star patterns in (¢,z) and in (¢ ,2’ ). A five differencing star
pattern representing (9%/922% — v™29%/3t?% in (t,2) is transformed to a four differencing
star pattern representing a 82/3z' at' in (¢! 2! ) by a 45 degree rotation of the coor-
dinate axes. The five star pattern is drawn in the light lines, while the four star pattern
in the heavy lines. The original elements upon which the five star pattern is applied are
shown by the symbol O, while the elements upon which the four star pattern is applied
are shown by the symbol X.

N A
2 P8 2 , 2
operator 8~/81’8z operator 8%/8x
n+1 -1 1 n+1 174 |-1/2/1/4
n 1 -1 n 174 |-1/2|1/4
m m+l ’ k-1 k k+1 ’
5N T 5 X
—
0 0 7
(a) (b)

FIG. 3. (az) Finite-differencing star of 6%/6t' 6z' in (t' ,z' ). (b) Finite-differencing star
of 6°/6z' *in (z' ,z' ). The operator 6 /6z' % has been averaged over the four elements
in (¢’ ,z' ) plane. The finite-differencing star of &/6z' Zin (z' ¢! ) is the same as it is
in (z' ,2").
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Examples of using the LTWE migration on synthetic data

Figure 4(a) shows the impulse response of the LTWE operator. The semicircle
response Is well preserved, which shows that the LTWE is valid for events with any pro-
pagating angle. For comparison, Figure 4(b) shows an impulse response of a 15 degree
operator. The semicircle is distorted by the 15 degree operator, because the large angle
events corresponding to the upper part of the semicircle have been distorted and elim-
inated by the dip-filter effect of the 15 degree operator. It is clear that the LTWE opera-

tor is much better than the lower-order 15 degree one.

The LTWE impulse response The 15 degree impulse response
midpoint midpoint
20 410 60 20 40 60
T Il lg IHH gIH [ i °© | II(HUNH%%ggjﬂ!”l(]{lll
Rl Hhi iy )
Wi g i ‘ |
SRl NGt R il e
et LS
L o a 1!
S 13
T s LI >
g i g

(2) BT

FIG. 4. (a) Impulse response of the LTWE operator. (b) Impulse response of the 15
degree operator. The plotting parameters of both figures are the same. The velocity of
the model is constant. The finite-differencing dispersion effect shown on the upper wig-
gling part of (b) is greatly reduced on (a).

Figure 5 shows a comparison of the results of applying different migration operators
to the same synthetic data. The original model is composed of 5 segments of lines having
5 different dipping angles. The data is generated by phase-shift modeling. The four
different migration operators are: (1) 15 degree in time-space domain; (2) 15 degree in

frequency-space domain; (3) 45 degree in frequency-space domain; and (4) the LTWE.
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The small-angle reflectors are imaged well by all of the four methods.
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However, the

reflectors with large angles, especially the steepest one, are well imaged only by the

LTWE operator. The comparison between the LTWE and the conventional 15 degree

and 45 degree migration operators shows that the LTWE one is promising.
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Synthetic seismogram
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45 degree frequency migration
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Comparison between 4 different migration operators. (a) The 5-segment

dipping-bed model. The slopes of the five segments are: 0, 0.5, 1, 2 and 4, respectively.
The steepest one has the angle about 76 degree. Velocity is constant in the model. (b)
The synthetic selsmogram generated with phase-shift modeling. (¢c) Migration with 15

degree operator in time-space domain.
frequency-space domain.

(e) Migration with 45 de

domain. (f) Migration with the LTWE operator.
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The LTWE in velocity varying media

So far, we have not taken into account the variation of v. When the velocity is
varying, there will be an error term in the LTWE; this term also exists in the all
approximating one-way wave equations. It turns out that the error caused by the vary-

ing velocity is proportional to the velocity gradient divided by the velocity .

In order to check the error caused by varying velocity, let’s derive the LTWE in

another way. Starting with the full wave equation (1),

o’p &P 1 &P

— — =0, 1
dz? 92?2  v? 942 (1)

and letting dz = v (r)d 7, where 7 is the so-called two-way vertical time, we have,
82:{1 i}{l i}: 1 3 1 dv(r) I (33)

9z2 v(r) arflv(r) ar v¥7) 97 v¥r) or dr’

The wave equation in (¢,7,2) is,

ap 41 P 1 3P _ 1 3v(r) oP (34)
a9z viAr) 87  v¥r) ot? v¥r) 9r  ar
Now take the velocity independent linear transform:
Ly =——— {7+ t}
7 |
(35)

Then, the left-hand side of equation (34) is transformed to the left-hand side of the
LTWE operator (17). Because transform (35) is velocity independent, the transform, (35),
itsell will introduce nor error. Therefore, the right-hand side of equation (34) is the error

term in the LTWE (17), when velocity is varying. The error term Is,

error = o = T T - (36)

Hence, the error term is proportional to velocity gradient divided by velocity, times
the wavefield gradient. This term can be easily coded into the LTWE operator, and will
be very significant in the modeling of both reflections and reverberations. Because the
velocity usually changes smoothly, the velocity-error term is actually negligible in the
LTWE migration. The velocity error term must be neglected if one is interested in

migrating the primary reflections only.
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As it is mentioned in the early sections of the paper, the solution of the LTWE con-
tains both the upcoming and downgoing waves. However, when the velocity is constant
in the medium (hence, the impedance is constant since the density is assumed to be con-
stant in the full wave equation), the LTWE migration will not generate the reverbera-
tions on the final section. The non-reverberation solution of the LTWE, in the constant
velocity medium, can be seen from the impulse response of the LTWE operator shown in
Figure 4(a).

When velocity is smoothly varying, the reverberations generated by the LTWE

operator is usually too small that they are negligible, comparing to the primary reflection

images.

When the velocity function has a discontinuity at some depth, the waves extrapo-
lated at that position will be transmitted and also reflected, generating the reverbera-
tions. The reverberation can be reduced if we ignore the velocity error term represented
by equation (36). Figures 6(a) and 6(b) show the comparison between ignoring and
adding the error term in the LTWE migration. The model has a sharp velocity discon-
tinuity at 7=18: v(7<<19)=2 and v (7>18)—4 (units are normalized). The input data is
a spike at (t =28,z =33). The reverberation appears as the downward curving curve on
the middle of the figures marked by the symbol M.

Without error term With error term
velocity
midpoint midpoint
20 10 60 20 40 60 0 2 4.y
° T T e © T T e
| A T i Pty I
M 4 M S
i W 18
P ) '}Q’JSEI géli({(ﬁ’ 8 \ o
g. g. ) l.llllllpp
2 g
& - N
() ©
8 = 9
N2

() \ (b) (c)

FIG. 6. The significance of the velocity error term in generating the reverberation from
velocity discontinuity in the LTWE migration. (a) The impulse response without the
velocity error term in the LTWE. (b) The impulse response with the velocity error term
in the LTWE. (c) The velocity function of the model.
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The finite-difference LTWE algorithm coded with the velocity error term can be

used in modeling both the primary and the multiple reflections.

APPLYING THE LTWE MIGRATION TO THE FIELD DATA

The purpose of migration is to migrate both diffractions and dipping reflections.
The following factors are used in deciding which algorithms to use for migrating a
stacked section: economy of computation, purpose of migration, quality of stacked sec-
tion, and geology of the section. No migration is needed if the section has only flat
events. Lower-order equation algorithms can be used if no steeply dipping reflections are
present in the stacked section. The quality of preserving large angle events in stacked
section can be improved if dip-moveout, or constant velocity stack algorithms, or other
algorithms, are used. The LTWE migration can give better results than do lower-order
equation migrations if the seismic data are recorded over an area where the geology is

complicated and if the large-angle reflections are well stacked into the stacked sections.

The LTWE migration is used on a Chevron dataset of the Gulf of Mexico. The
input data is obtained by double slant stacking over near traces of profiles. This idea of
slant stacking over near traces was suggested by J. Claerbout and will be discussed in
details in the next report. Stacking in the shot-geophone space better preserves the
higher-angle reflections in the stacked section than does the conventional stacking in the
midpoint-offset space, because the data aliasing problem is less severe in the shot-
geophone space than in the midpoint-offset space. One part of double slant stacked sec-
tion is shown in Figure 7. The reflections from steeply dipping fault planes are well
stacked into the section for migration. Both the conventional 15 degree and the LTWE

migration algorithms are used to migrate the stacked section.

In both the 15 degree and the LTWE migrations, a few traces at each side of the
input data are tapered slightly so that the reflection from the edges of the finite-

differencing grids is reduced.

The diffraction tails in the unmigrated section are shrunk, or collapsed into the
difiracting points in the migrated sections shown on Figures 8(a) and 8(b). The fault
plane reflection between horizontal coordinates 7.9 km and 10 km about 1.8 seconds to
3 seconds is better migrated and preserved by the LTWE method than the 15 degree
one. The 15 degree equation migrated section almost losts the upper part of this fault
plane reflection, because the upper part of the fault plane has larger angle than the
lower part and the 15 degree migration method does not handle the large angle reflection
properly. It is actually the dip-filter effect of the 15 degree operator that eliminates the

higher-angle reflection. The 15 degree equation migration also tends to under-migrate the
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dipping events. Some under-migrated fault plane reflections on both the migrated sec-
tions are possibly caused by the out-of-plane reflection problem at those positions.

Three-dimensional migration should migrate them properly.

Double-slant stacked section
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FIG. 7. The unmigrated double slant stacked section of Chevron dataset in the area of
the Gulf of Mexico. The horizontal distance spacing is 25 meters. The time spacing in
the sections is 0.008 second.
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FIG. 8. (a) The 15 degree migrated section. (b) The LTWE migrated section. The event
marked by E' is well migrated by the LTWE migration operator. The upper part of E

about 2 to 2.5 has been eliminated by the dip-filter effect of the lower-order 15 degree
migration operator.
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CONCLUSION

The LTWE equation is accurate for events with all possible angles of propagation.
The linear transformation over both depth and time reduces the two terms of second
derivative in the full wave equation to a single second cross derivative term in the
LTWE, instead of dropping a second derivative as in the case of the retarded coordinate
transform: ¢/ = t-z/v, 2! = z; or the moving coordinate transform: z' — z +ut,

t! = t.1It is actually a combination of these two transforms.

The Linear Transformation give us an accurate wavefield extrapolation operator
which can be applied not only to stacked data migration and both primary and multiple
reflection modeling, but also to prestack migration and three dimensional wavefield

extrapolation, etc.
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APPENDIX

A RATional FORtran (RATFOR) subroutine of the LTWE migration

The subroutine does the LTWE migration. The wave equation used is given by

equation (34) in (z,7,¢) space. The velocity independent linear transformation,

AT

el .

xl —

| .

8

is applied to equation (34) to obtain the LTWE. The velocity error term due to the vert-

ical velocity gradient is also coded into the program.

The subroutine calls a real tridiagonal-matrix-solver subroutine (rtri) in each extra-

polation step, because the velocity is assumed to vary point by point in (z,7).

When the velocity does not change point by point, the calculation of coefficients of
the matrix is necessary only when the differencing stars are moved to the region where

velocity is different from the velocity in the previous region. When the velocity keeps the
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same for many steps of wavefield extrapolation, the Cholesky’s method of solving tridi-
agonal systems of equations should be used instead of the method implemented in the
subroutine, rtri. The Cholesky’s method decomposes a tridiagonal matrix into a product
of a lower bidiagonal matrix and an upper bidiagonal matrix. The coeflicients of these

two matrix can be saved and used again by the later steps (Atkinson, 1978).

# The LTWE migration subroutine

#

#p input data and output data

# nt,nx trace length, number of traces

# dt,dx sampling intervals

#v velocity profiles of length nt; v==v(nt,nx)

# trick 1/6. trick in more accurate finite difference

# approximation of second x derivative;

# ver= 1: velocity error term is taken into consideration
#

# Define nxmax and ntmax in the main program before using the subroutine

# where ntmax=nt and nxmax=nx.

subroutine LTWE(p, v, trick,ver,nt,nx,dt,dx)

real p(nt,nx),u(nxmax),w(nxmax),z(nxma,x),y(nxmax),d(nxmax),apb(nxmax)

real a,tmp,trick

real diag(nxmax,ntma.x),v(nt,nx),dt,dx,dd,oﬁdi(nxmax,ntmax),verrox(nxmax),ver

integer ix,nx,it,nt,it1,it2,mt,it1end sqrt2

tmp=dtxdt/(2+8*dx*dx*4)
sqrt2==sqrt(2.)

doiter=1, 2

{

do it2=1,nt-1,1
{
do ix=1nx
{
u(ix)=0. # upcoming wave boundary condition
z(ix)=0
¥

if (iter === 1)

itlend=nt-it2+1 # for negative t2 : -nt < t2 <=0
if (iter == 2)
itlend=it2+1 # for positive t2 : 0 < t2 <= nt

SEP-41



188 L:

do itl=nt,itlend,-1

{
# update the differencing star
# Differencing star: u=p(t1,t2+1) w=p(t1+1,t2+1)
# 2=p(t1,t2)  y=p(t1+1,t2)
do ix=1,nx '
{
w(ix)=u{ix)
y(ix)=2(ix)
z(ix)=p(it1,ix)
}
if (iter == 1)
mt=(it1+it2+1-nt)/2 # locate the tau coordinate
if (iter == 2)

mt=(it1+it2)/2 # locate the tau coordinate

do ix=1,nx  # calculate the tridiagonal matrix coefficients
{
a=v(mt,ix)*v(mt,ix)*tmp
# a == v#vdtl*dt2/(8+dx*dx)==tmp*v*v
#dtl=dt/sqrt(2.) Transformed time interval dt1=dt2=dt/sqrt(2.)
apb(ix) = a-+trick;
diag(ix) ==1.+2.#(a-trick) # tridiagonal coefficients
offdi(ix) = trick-a
verror{ix) = 0.
}
# Error term in the wave equation under coordinate (tau,x,z), due to
# velocity variation
if (ver ==1)
{
do ix=1,nx
verror(ix)=(v(mt+1,ix)-v(mt,ix))/(sqrt2*v(mt,ix)*v(mt,ix)*v(mt,ix)*dt)
}
# compute right-hand-side column vector; zero-slope b.c.’s
dd = (1.-verror(1}apb(1))*(z(1)+w(1))+apb(2)*(z(2)+w(2))
d(1) = dd-diag(1)*y(1)-offdi(1)*y(1)-offdi(2)*y(2)
do ix=2nx-1
{
dd = (1.-verror(ix)-2.*apb(ix))*(z(ix)+w(ix))
dd = dd + apb(ix-1)*(z(ix-1)+w(ix-1))
dd = dd + apb(ix+1)*(z(ix+1)+w(ix+1))
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d(ix) = dd-diag(ix)*y(ix)-offdi(ix-1)}*y(ix-1)
d(ix) = d(ix) - offdi(ix+1)*y(ix+1)
}
dd =(1.-verror(nx)-apb(nx))*(z(nx)+w(nx))+apb(nx-1)*(z nx-1)+w(nx-1))
d(nx) = dd-diag(nx)*y(nx}-offdi(nx)*y(nx)-offdi(nx-1)*y(nx-1)
# solve tridiagonal system; zero-slope boundary conditions
diag(1)=diag(1)+offdi(1)
diag(nx)=diag(nx)+offdi(nx)
call rtri(nx,offdi,diag,offdi,d,u)
do 1x=1,nx

p(it1,ix) = u(ix)

subroutine, rtri, solves a real tridiagonal system of equations :
AX=D

#
#
#
# b are the main diagonal coefficients
# a are the lower diagonal coefficients
# c are the upper diagonal coefficients
subroutine rtri(nx,oﬁdi,diag,oﬁdi,d,u)
real a(n),b(n),c(n),x(n),d(n),e(n),f(n)
integer n,i
real den
(1) = - o(1) / b(1)
f(1) = d(1) / (1)
doi=2n-1
{
den = 1./(b{i) + a(i) * e(i-1))
e(i) = -c(i) * den
£(i) = ((d(i) - a(i) * 1(i-1)) ) * den

1
x(n) = (d(n)-a(n)*f(n-1))/(b(n)-+a(n)*e(n-1))
doi=n-11,1

x(i) = (i) + e(i) * x(i+1)
return

end
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BMECTO Hero HCMOJIb3yeTcsl HesBHAst 3aBHCHMOCTb F (o, kx, Ry). B Ta-
KOM cJyyae B COOTBETCTBHH C H3BECTHHIM COOTHOIIEHHEM M3 TEOPHH
YaCTHBIX NMPOH3BOJAHBIX HMeeM

o OF/dk
Ok 9F /0w *

B sxcnepuMeHTanbHOH reo@u3HKe NMOHATHE CKOPOCTH MOYTH BCeraa
CBfI3BIBAETCS C TPYNNOBOH CKOPOCTBIO, € KOTOPO#l IepeMellaercs

PUC. 1.11. ITpumep aByx sonw I n *
2 3BYKOBOrO JaBJeHHf, KOTOpHE
CYHTAIOTCA DE3Y/AbTATOM SACPHOrO
B3phHiBa B A3uH (OHM GEITH 3aperH-

. crpupoBadn B KaandopHHH OZHHM

@mﬁﬂﬂ u3 MHkpobaporpadoB aBTopa)

Mepboe
bcmynnenue

NepBoe
Bemynnenue

sneprus. Ha puc. 1.11 npucyrcTByer H3JMIUHKE <«IIyM» (OGBLIYHBIRE
B 3KCIIEpHMEHTANLHOH TeO(pH3HKe), OJHAKO MOXKHO BHJAETb, YTO BO3-
MYIIeHHe NPOSB/ASETCS CHavaJa B BHAe KoJebaHuil ¢ GOJBLIAM HEPUO-
[0M, a 3arteM yxkKe B BuIAe KojeGaHuil ¢ KopotkuM nepuogom. I'pym-
noBas CKOPOCTb HaXOAUTCSl NyTeM JedeHHS pAacCTOSIHUS Ha BpeMs
pacrnpoctpaHeHus BOJIHBL. (Pa30Bble CKOPOCTH MOXKHO H3yuaTb, HMes
ABe CTaHUUM HAOJIIOJEHUS HeXaJeKo APYr OT Apyra W u3Mepsis Bpe-
MEHHYI0O 3aJ1epXKKy HEKOTODHIX clelu(pHYeCKUX MepeceueHHH HYJeBOil
Judnd. IIpwinna, mo KOTOPOH CTAaHUMM pAcloiaralT HeNaJeKo APYT
OT JApyra, 3aKJIO4YaeTcs B TOM, YTO (opMa BOJHBI HEHNPEPHIBHO H3Me-
HSETCS M €CJH CTAHLHH OTCTOAT CJHMIIKOM [aJeKo APYr OT Apyra, TO
He OyleT BO3MOXKHOCTH ONpele/]eHUsi TeX [epeceueHuil HyJIeBOR
JINHHH, KOTOPHle JOJKHbl CPABHHBATHCS.

1.5. KOPPEJISALLUA H CIEKTPbI

CrieKTp BpeMeHHOM (YHKIHMHM €CTb BO3BeJEHHOE B KBaJpaT npeo6pa-
soBaHne Qypre 3710 QynkuuH. B cayuae peficTBuTesnnHON (GYyHKUHH
npeoGpasoanne Pypbe HMeeT YeTHYIO AeHACTBHTENbHYIO yacTh RE u
HedeTHYI0 MHUMYI0 4acTb [O. BasiB KBagpatel moayJell, nuMeem:
(RE+i10) (RE—iI0) = (RE)2+ (10)2.

KBanpar HeuerHo#l GYHKUUH TaK e KaK H KBaApPaT YeTHOH (QyHKUHH
IBJASIETCS, OYEBMAHO, 4YeTHOH (QyHKuned. TaxkuM o6pasoM, crekTp
A€HCTBUTENbHOKR QYHKUNH BPeMEHH eCTb YeTHass QYHKIHS, TaK 4YTO ero
3Ha4YeHHs B 00JacTH IOJOMHTENbHEIX YACTOT COBNAJAIOT C €ro 3Ha-
YEHHSIMM B 00JacTH OTPHIATEJbHHX YacToT. [103TOMy HeT oco6oro
CMbIC/Ia BBIEJATH OTPHIATENbHble YacTOTh. XOTA GOJABIIHHCTBO
BCTPeYaAOHIUXCH HA NPaKTHKe GYHKUHH BpeMeHH SBJSIOTCA LeHCTBH-
TEJbHLIMH, PACCMOTPEHHE KOPPEJAUHH H CNeKTPOB He OyleT MmaTeMa-
THYECKH INOJHHIM O6e3 OGYHKUHI BpeMeHH ¢ KOMIJIEKCHHIMH 3Haye-
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Frorr} the Russian ’granslation of Jon Claerbout’s Fundamentals of Geophysical Data Pro-
cessing. The caption to Figure 1.11 reads: “An example of two waves, 1 and 2, of
atmospheric pressure, which are believed to be the result of a nuclear explosion in Asia

(they were recorded in California on one of the author’s microbarographs).” No times or
dates are given.
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