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Velocity analysis without picking
John Toldi

ABSTRACT

Velocity analysis is posed in this paper as an optimization problem. The paper
begins by defining an objective function, which is the measure of how well a velocity
model explains the recorded data. The objective function I chose is the power in a
common-midpoint stack. This stack is formed by a summation along offset-dependent
trajectories, determined by the velocity model. I propose two forms of this objective
function: one with trajectories that honor the calculated traveltimes, the other with
hyperbolic trajectories. Having defined an objective function, I then look more carefully

at its calculation.

This calculation is divided into two steps. The first relates a velocity model to the
corresponding traveltimes and stacking slownesses. This step can be easily linearized, so
it can be rapidly calculated. The second step uses these traveltimes or stacking
slownesses to define a summation trajectory through the data. In this step the travel-
time and stacking slowness approaches diverge: the stacking slownesses lead to much

simpler and faster algorithms than do the traveltimes.

Then, I develop a steepest-descent algorithm, based on stacking slownesses, that
does not require any velocity picking. I apply this algorithm to a field dataset that has a

large, near-surface, low-velocity anomaly.
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INTRODUCTION

The goal of most velocity analysis methods is a velocity model that can explain
either the observed traveltimes or some function that depends on the traveltimes. The
conventional method builds this velocity model in a two-step process. The first step
forms sums along trajectories that are hyperbolic in time and offset; the “velocity” that
maximizes the power in the sum is called the stacking velocity. These stacking velocities
are clearly dependent on the traveltimes. The second step transforms these stacking

velocities into an earth model, which in this paper is called an interval velocity model.

The conventional method uses the Dix equation to perform this second step. This
use is justified by the assumption that the stacking velocity is the root mean square
(RMS) velocity; this assumption is valid only for laterally invariant velocities. An alter-
native to the Dix equation has been described: a linear scheme that relates the laterally
varying components of interval velocity to those of stacking velocity (Rocca and Toldj,
1982, Loinger, 1983). The second step of the velocity analysis then consists of using the
inverse of the linear relation to determine the interval velocity model that is consistent

with the measured stacking velocities.

Methods that work directly with the traveltimes, rather than indirectly through a
function of traveltime (such as stacking velocity), present an alternative to the conven-
tional stacking-velocity method. They are similar to the conventional approach, in that
they construct a velocity model through a two-stage process. The first stage measures
the traveltimes of certain reflectors, usually by cross-correlating time windows of data
(those centered on the reflectors of interest). The location of the peak of the cross-
correlation is interpreted as the traveltime difference between the two rays that arrive in
the correlated time windows. During the second stage, an interval velocity model
corresponding to these traveltimes is determined through the use of an inversion pro-

cedure, for example tomography.

Both conventional and traveltime-based methods of velocity analysis share one
common feature: both are two-step processes, in which some kind of “picking” or
interpretation comes between the two steps. This picking may be done automatically, as
is usually done for picking the peaks of cross correlations, or manually, as for a conven-

tional velocity analysis.

When the data are contaminated by noise, picking can become difficult; one can
easily pick the wrong peak. These picking errors do not obey the gaussian distribution
on which the least-squares inversion to the velocity model is based (Rothman, 1984). 1
propose a method that dispenses with this picking procedure, by posing velocity estima-

tion as an optimization problem. This method is based on the same principle of stack
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optimization that Shuki Ronen (1984) and Dan Rothman (1984) have used in their work

with residual statics.

The first part of this paper discusses the objective function, which is the measure of
how well a velocity model explains the data. The objective function I choose is the
power in a common-midpoint stack. Most of this first part of the paper discusses the
calculation of the objective function for an arbitrary velocity model. Particular atten-

tion is paid to methods of simplifying this calculation.

Throughout the first part of the paper, I discuss two forms of the objective func-
tion: one based strictly on traveltimes, the other on stacking slownesses. Indeed, within
the framework of this paper, the two approaches are very similar; they differ only in the
details of how the objective function is calculated. These differences do, however, have
important implications for practical velocity analysis algorithms. In particular, the
stacking velocity formulation can be simplified in a way that the traveltime formulation

cannot.

Thus, the second part of this paper shows the development of a computationally
efficient algorithm, based on stacking velocities, that finds an optimum velocity model by
repeatedly searching along a gradient direction. I apply this algorithm to a field dataset

that has a large near-surface low-velocity anomaly.

THE OBJECTIVE FUNCTION

Consider a parameterized velocity model m. (Throughout this paper, bold charac-
ters represent vectors). The parameters might be velocities at a set of gridpoints, or
expansion coefficients for some more global set of velocity basis functions. How can we

decide if this model is better than some other one?

Ray-based velocity analysis methods provide an answer to this question: the better
the match of the raytrace-derived traveltime surfaces to the true traveltime surfaces of
the data, the better will be the velocity model. Different methods of determining what

constitutes a better fit lead to different objective functions.
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FIG. 1. Common midpoint gather with two reflections. The solid lines are the summa-

tion trajectories predicted by the velocity model. The dashed lines indicate the boun-
daries of the summation’s time windows.

Power in the stack

The power in the stack, formed by summing along the calculated traveltime sur-
faces, is a simple and effective measure of the quality of the fit. This idea is illustrated
in Figure 1, which shows a common-midpoint gather that contains two reflections. Ray-
tracing through an assumed velocity model presents traveltime as a function of offset for
each of the reflectors in this midpoint gather (the traveltime curves are shown as solid
lines in Figure 1). These traveltimes can now be used to define a summation trajectory
through the midpoint gather. Because a summation trajectory is valid for a specific
reflector, it applies to a time window (At,;, in Figure 1) large enough to include the
entire wavelet. The boundaries of the time windows are indicated in dashed lines in Fig-

ure 1.

The closer the match of the predicted traveltimes to the true traveltimes, the more
the contributions from the different offsets will add in phase. Squaring the sum gives a
purely positive function. Thus, the sum over midpoint and reflector of all of the indivi-
dual squared sums will increase as the velocity model approaches the true one. This

total sum is simply the power in the stack.
This sum is - mathematically presented, with D (y,z,t), the data at midpoint y,
offset x, and time ¢, and with P = power in stack , as

At = At,,,

P =Y 3 (ZD[y,x,t(y,a:,to;m)+At])2 (1)

to At = - At
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In equation (1), the zero-offset time ¢y can be thought of as a reflector identifier; the sum
over tg is the sum over reflectors of interest. ¢(y,z,tq; m) fully describes the travel-

times predicted by the model m.

Sums along hyperbolic trajectories

A simple form of the objective function can be derived by replacing the detailed
traveltime trajectories with ones that are hyperbolic over time and offset. Suppose that
corresponding to each reflector in a midpoint gather, one finds the hyperbola over offset

and time that presents the best least-squares fit to the the calculated traveltimes. This

hyperbola is parameterized by the stacking slowness w = 1 in the

stacking velocity’

well-known NMO equation:
t? = to? 4 2% w? (2)

where z is the offset, ¢, the zero-offset time. Now sum over offset along this hyperbolic
trajectory and take the square of the sum. Add together these squared sums for all mid-
points and reflectors, exactly as is done with the sums from the traveltime trajectories.

This total power indicates how well the velocity model explains the traveltimes.

Because the moveouts in figure 1 are clearly non-hyperbolic, the hyperbolic summa-
tion trajectories will never pass exactly through all of the datapoints. The key assump-
tion of this method is that the same velocity model leads to maximum power for the
hyperbolic trajectories and the traveltime trajectories. That is, the sum along the hyper-
bola that comes as close as possible to the best set of traveltimes should lead to greater
power than a sum along the hyperbola that comes as close as possible to a lesser set of

traveltimes.

Unfortunately, there might be sequences of traveltimes that the hyperbolic sums
will simply not detect. This is the classic problem of a model null-space: two different
models might produce the same value for the objective function. As I have discussed in
another paper, much of this problem is avoided if the effects of a specific anomalous zone
are viewed from several reflectors (Toldi, 1983). A component of the velocity model,
although unable to produce any detectable effect for some reflectors, might have no such

problem with the other reflectors.
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FIG. 2. A velocity model leads to traveltimes and stacking slownesses. These lead to
summation trajectories, which provide a test of the quality of the velocity model.

Figure 2 summarizes the discussion so far. A velocity model produces a set of
theoretical traveltimes or stacking slownesses. For each reflector and midpoint, these
traveltimes or stacking slownesses determine a summation trajectory over offset. The
total power, which is formed by the squaring and the adding together of the individual

sums for the entire dataset, is a measure of the quality of the velocity model.

SIMPLIFYING THE CALCULATION OF P (m)

A velocity analysis algorithm will necessarily involve the repeated evaluation of the
objective function discussed in the last section. As presented thus far, the algorithm
would be quite impractical. Each of the two steps of Figure 2--the calculation of travel-
times or stacking slownesses for a velocity model, and the calculation of the power in the

appropriate stack--can, however, be simplified.

Simplifying step one - linear theory

The theory discussed thus far assumes that there is a non-linear relationship
between the model m and the intermediate data d (which may be either traveltime t or
stacking slowness w). Thus, for each change in the model one would have to redo the
raytracing. Furthermore, for the stacking slowness method, this raytracing would be fol-
lowed by a new least-squares fit through the relevant traveltimes. If the change in the

model is fairly small, a linear approximation to the relationship between d and m is
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valid.
Changing the model from m; to m, leads to a new traveltime t,

t(my) =~ tmy) + S (my - my) 3)

As is well known in seismic tomography (Aki and Richards, 1980, Fawcett, 1983), the

partial derivative matrix 58_1-,_ is easily calculated with the help of Fermat’s principle.
m

The change in the j* component of the traveltime, (j refers to a specific reflector,
offset and midpoint) due to a small perturbation in the slowness model is simply:
At; = [ Aw(y,z) dS;
SJ

where S; is the unperturbed raypath for the ray indexed by j, and Aw the perturba-

tion in slowness.

The stacking slowness method has an additional complication: the non-linearity of
the relationship between traveltime and stacking slowness. This relationship can also be
linearized (Loinger, 1983, Toldi and Rocca, 1982). Specifically, one considers how the
stacking slowness (the slope of the best fit line in £2 — 22 space), would change if one of

the traveltimes within the midpoint gather were changed slightly. This second lineariza-

tion provides the matrix %% Thus,

0
w(m) ~ w(m,) + 6—1‘% (mjy - m,) (4)
dw Ot
= w(m;) + 3t m (my — my) (5)
—;i is the same matrix as that in the traveltime problem. Thus, with
m

Aw = w(m,) - w(m,;) and At = t(m,) - t(m,), combining equations (3) and (5) gives:

Aw — WAy
v %

That is, the stacking slowness perturbations are just a filtered version of the traveltime
perturbations. Note that the multiplication of the two partial derivative matrices in

equation (5) collapses the offset dimension. A detailed derivation of -2V

s given in

Rocca and Toldi, 1982.
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Simplifying step two - stacking slowness method

The linearization presented in the last section can greatly simplify the calculations
of traveltimes and stacking slownesses. This section examines how the second step--

stacking according to a calculated trajectory--can be simplified.

A conventional velocity analysis program provides semblance as a function of mid-

point y, zero-offset time ¢, and stacking velocity v,. I prefer to use stacking slowness,

—1-, in place of stacking velocity. Note that semblance then takes the place of
Us

w

power in the stack.

Semblance is similar to power in the stack; its calculation includes an additional
normalization (the individual squared sums over offset are normalized by the sum of the
squares over offset). The real goal is to measure alignment along some curve, and sem-
blance provides an effective measure. This cube of data, semblance — S(y,tow), is

ideal for use with a velocity analysis program based on an overall optimization principle.

Consider again the velocity analysis algorithm of the last section. By some as yet
unspecified means, a model m is chosen. Corresponding to this model are a set of

theoretical stacking slownesses, w, such that,

[W(m)]j = w(y,to; m)

The index j ranges over all combinations of midpoint y and zero-offset time to- The

total power P corresponding to the model m is
P(m) = 3} S(y,to,w(y,te m)) (6)

yrto

The key point is that S(y,tp,w) has already been calculated for all ¥y, to and w
in the conventional semblance analysis. Thus, evaluating the objective function for a
new model simply means recalculating w(m), then summing through the semblance cube

along these new w curves. Of course, because the w(m) values may not fall exactly on

computed semblance values, an interpolation in the slowness direction is necessary.

Of the four sums found in equation (1), (over y, to, At,;, , and z) only two--the
sums over y and {g--remain in equation (6). The sums over offset z and time window
Aty are computed in the initial semblance analysis. The absence of these sums from
the active velocity-analysis loop significantly simplifies the repeated evaluation of the
objective function. At the cost of the initial overhead of the semblance analysis, one

achieves a process that can much more readily be made interactive.
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Simplifying step two - traveltime method

It is natural to ask if such a simplification is possible for a traveltime based
method. The answer is a qualified maybe. The analog to the stacking-slowness scan
would be a scan over traveltime for each of the trace segments in a common-midpoint
gather. The basic difficulty with traveltimes is that the stack depends on the travel-
times predicted for all of the offsets. Thus, the scan over traveltime for one trace would

correspond to all of the other offsets having their traveltime fixed.

To form the full set of scans, one would need to look at all combinations of shifts
for the traces in the gather. The number of stacks formed in this manner would be

enormous: allowing each of the n, traces in the midpoint gather to scan through NYay

different traveltimes would lead to (n,)™ different stacks. Thus, the velocity-scan
method that proved to be so useful in the stacking-slowness method has no simple ana-

log in the traveltime method.

Instead of adding the time segment to a stack trace formed with the current esti-
mates of traveltime, one can add it to a model trace that remains constant throughout
the process. Such a method, which is similar to the pilot-trace schemes commonly found
in residual statics, allows the problem to be reduced to a more reasonable size. A travel-
time scan used in that scheme would produce only nz * nlag stack traces for each

event in a midpoint gather.

Flat reflectors - a practical detail

For a flat reflector, the zero-offset time will vary only moderately as a function of
midpoint. By taking the semblance analysis within a time window of some average
zero-offset time and summing over time, one can collapse the time axis of the semblance
cube into a few points, one time point for each reflector. The end result is a semblance
cube that consists of a few planes, one for each reflector, with axes of slowness and mid-

point.

Figure 3 shows one such plane for a shallow reflector on a dataset with a near-
surface low-velocity anomaly. This is essentially a horizon velocity analysis: stacking
slowness versus midpoint for a specific reflector. Such an analysis can likewise be done
for a sloping or undulating reflector. The flat reflector has a horizontal time window; the

time window for a curved reflector follows along the zero-offset times.
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FIG. 3. Semblance as a function of midpoint and stacking slowness for a flat reflector.

OPTIMIZATION METHODS

The first part of this paper has attempted to answer the question: how can we
know if one velocity model is better than another? The answer is to define an objective
function, here the power in a common midpoint stack. But knowing how to compare

two velocity models is only the beginning of the solution. How do we choose that second

velocity model?

Methods using no derivative information

Optimization methods can be classified according to how they choose the second
model point. In general, the key consideration in the classification is the level of infor-
mation used about the derivatives of the objective function. Thus, the simplest methods
use no derivative information at all; they simply evaluate the objective function repeat-

edly. Non-derivative methods are important when the derivatives are either difficult to

calculate or unreliable.

The very simplest such method would simply try every possible model. For the
velocity analysis problem such a method is clearly out of the question. (If every one of
the 100 parameters of a velocity model were allowed to try any of 50 values, 100%

models would be tested.)

There are cleverer ways to search through the models than the simple exhaustive

search. Dan Rothman (1984) and Shuki Ronen (1984) have applied different non-
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derivative methods to the residual statics problem, with considerable success. Residual
statics is a special case of traveltime-based velocity analysis; it has a very simple linear
relation between the model parameters--the shot and geophone statics--and the travel-

times.

A velocity analysis method based on traveltimes could likewise be designed as a
non-derivative search method. Such an algorithm would be time consuming: the rela-
tionship between the model and the traveltimes is considerably more complicated for a
full velocity model than for a statics model. A very practical non-derivative method of
velocity analysis could result from using stacking slownesses. The simplified evaluation
of the objective function that the use of stacking slownesses permits could prove

extremely useful.

The next class of optimization methods use first-derivative information. The

remainder of this paper develops a velocity analysis method of this sort.

Gradient methods

The gradient of the objective function, taken with respect to the model parameters,
indicates the direction in which there is the maximum increase in the value of the objec-
tive function. A natural choice for the next model point is somewhere along this gra-
dient direction. Let P (m) be the objective function, evaluated for model m. Further-
more, let v ,P be the gradient of the objective function with respect to the model

parameters. A simple gradient descent algorithm (steepest descent) proceeds as follows:

At a given model point m;, form v, P
Search for o that maximizes P(m; + o ¥ pP)

Update m, by setting m; = m;+avy,,P

- W N~

If the algorithm has not converged, go to 1.

In velocity analysis, P(m) is calculated through an intermediary, for example
stacking slowness. That is, P(m) is more properly P [w(m)]. The gradient can then be

expressed, with the help of the chain rule of partial differentiation, as

(VmP) = 5o 7

j=n’*n¢0 P aw]

SEP-41



88 Told:

All derivatives are evaluated at the current model point m; n, = number of midpoints,

and n; = number of reflectors.

The derivative matrix G can be defined, with elements,

(911),,

Gy = T (9)

With the substitution of this definition, equation (8) becomes

Th M op
P), = G),; 10
(TP = % G- (@) (10)
or, in matrix notation,
VmP: GTVWP (11)

The earlier discussion on linearization showed how to calculate the derivative matrix G.
I calculate 7P by using a finite-difference method. Because the velocity scans have

provided P (w) for all w, this calculation is easily performed.

Before proceeding to the discussion of the finite-difference derivative, I find it help-
ful to compare the algorithm presented here with a method based on picked peaks.
Using the conventional formulation, one would look for the model that provides the best
fit (in a least-squares sense) to the picked stacking slownesses. Because of the varying

quality of the data, a weighted-least-squares method is appropriate.

One can approximate the objective function by a quadratic function about Wy, the
picked stacking slownesses. The weights, Cq™"/* are related to the width and height of

the peaks, and thus contain the information about how accurately the peak could be
picked. That is,

Pw) = — (w- wp)T Cyql(w- wp) (12)
Using the conventional approach, one would have
VWP = 2C471 (w-w,) (13)

for voP in equation (11). Then w could be calculated with the help of the linear
theory. Thus, the difference between a conventional gradient-based velocity analysis and

the method proposed here is only the way in which v, P is calculated.

The finite-difference derivative is easily calculated. Recall from equation (6) that

P(w(m)) = ¥ S(y,tow(y,te; m)) = 3 S;(w;(m)) (14)
J

yrtO

The index j in equation (14) is used to identify y and to- Thus, Sj(w) is the semblance
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at y and ¢y, as a function of slowness w. With this notation,

(VwP); — 381: - S; [wj(m) + A:J) - S; [wj (m)] (15)

Aw is a unit change in stacking slowness.

Because the finite-difference method deals directly with the data, it incorporates the
weights automatically. Specifically, the higher and sharper the peaks are, the larger the
gradient (equation (15)) will be. Thus, the parts of the data with high and sharp peaks
will dominate the solution. A certain amount of smoothing of the semblance cube along
the slowness axis is desirable; the finite-difference derivative should be made insensitive

to the jitter of small-scale noise.

When the model places the stacking slowness in the vicinity of a strong peak, the
quadratic approximation will be valid: both the finite difference and the picked-peak
methods should provide similar results. Sufficient smoothing of the semblance cube
along the slowness axis will allow the finite-difference derivatives to sense the peaks from
a greater distance. Ideally, the descent algorithm would start with a long smoother,

then gradually shorten it as the algorithm converged.

Used with either the picked or finite-difference methods, the weights insure that the
high-quality parts of the data dominate the early stages of the descent algorithm. The
model formed at these early stages predicts stacking slownesses for all of the data; the
approximate location of the stacking slowness curves will be controlled by the good parts
of the data. Note that this resolves the issue of which peak to pick in zones of poor
quality data: the finite-difference algorithm will be working on the peak that is most con-
sistent with the model determined by the good quality parts of the data. The conven-
tional approach would still be trying to fit the peak that was originally picked.

The automatic weighting device of the finite-difference method also proves to be
important for reflectors that are not continuous across an entire section. When a
reflector within a time window dies out, the smoothed objective function will be almost
completely flat. Thus, the relevant midpoints of that time window will contribute

almost nothing to the descent algorithm.

The linear approximation to the relationship between w and m further simplifies

the algorithm,
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The partial-derivative matrix G in equation (17) is evaluated at the model point my.

As the descent algorithm moves between points, G should be recalculated. On the
other hand, the linearization will typically be valid for a fairly wide range of model
points m. The real benefits of linearizing the relationship between m and w follow from
this second observation: G need only rarely be recalculated. Thus the raytracing that

goes into the calculation of G will be done infrequently.

I assume in this paper that the starting value of G is valid for the entire process.
Because my starting model is laterally invariant, the forward modeling (i.e. calculating w

given m) is particularly efficient.
VELOCITY ANALYSIS WITHOUT PICKING

Theory

The discussion of the previous section can now be summarized in the following

velocity analysis algorithm:

Set m to starting model: m = m,

Set w to starting value: w = w(my) = w,

Begin loop on iterations

Form y,,P at current model point m:

VmP = GT y,P
Line search for o that maximizes P(m + o v, P)
Pm+avyyP) = Piwm+ avyy,P))
= P[wo+ G(m - mg)+a Gy, P]

Update model
m = m+ aVV,P
w = w+aGvy,P

End loop on iterations

Note  that the algorithm searches for the o that maximizes
P[wg + G(m - mg)+a Gy, P]. This is a simple search of the form: find o to maxim-
ize P(a + ab), where a and b are known vectors. The linear theory is, of course,
responsible for this simple result. Using the fully non-linear relationship between w and

m requires that w(m) = w(my + ay,P) be recalculated for each value of o. Once
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again, when using an iterative linearization scheme one would want to retain the form of

G for as wide a range of m as possible.

Application to field dataset

The descent algorithm can best be shown by an example. Figure 4 is a stacked sec-
tion of a field dataset. The time sag and the lack of coherence beneath midpoint 125,
indicate a near-surface low-velocity zone. I calculated interval slownesses for this
dataset, in an accompanying paper in this report, using the form of the algorithm based
on picked stacking slownesses. At the end of this section is presented a comparison

between the velocity model derived here and that derived from the picked stacking

slownesses.
midpoint
50 100 150 800
=
o
o
®
0

FIG. 4. CMP stack of field data from the Central Valley of California. The time sag
and the lack of coherence beneath midpoint 125, indicate a near-surface, low-ve}omty
zone. The tick marks on the right show the location of the reflectors that I used in the

inversion.
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FIG. 5. The starting model for the descent algorithm. The model has nine layers. The
solid lines show the locations of the reflectors that supplied the stacking slownesses.

The starting velocity model for the descent algorithm is shown in Figure 5. The
model consists of nine layers; three are above the shallowest reflector. I derived the
laterally-invariant interval velocities shown in Figure 5, by doing a conventional velocity
analysis on a midpoint gather some distance from the anomaly, then using the Dix equa-

tion to relate stacking velocity to interval velocity.

Figure 6 shows contour plots of semblance as a function of stacking slowness and
midpoint, for the time planes that I used in the velocity analysis. The reflectors are at
times .5, .94, 1.16, and 1.34 sec (see also Figure 4). The solid line through each of the
planes is the stacking slowness corresponding to my starting model. The goal of the
velocity analysis will be to construct a model that warps these stacking slowness curves
towards the peaks of Figure 6. By so doing, the analysis will be maximizing the power
in the stack. Previous velocity analysis algorithms (e.g., those in my other paper in this
report) required that I pick that maximum by hand; here the solution will be driven

toward the peaks as the iterations progress.
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FIG. 6. Contour plots of semblance as a function of stacking slowness and midpoint, for
the reflectors at times: a) .5 sec, b) .94 sec, ¢) 1.16 sec, and d) 1.34 sec. The solid line
through each of the planes is the stacking slowness corresponding to my starting model.
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Figure 7 shows the same contour plots as were in figure 6, only now the stacking
slownesses corresponding to the successive models in the iterative process are drawn on
as solid lines. The final stacking slowness is drawn as a thick line. After 20 iterations,

the stack power was changing imperceptibly.

The two strongest reflectors, those at .5 and 1.34 sec, have the stacking slowness
curves that come closest to the peaks. This is exactly what one would have sought to

accomplish by introducing weights into the system; here it has happened automatically.

The interval velocity model derived by the iterative method is shown in Figure 8.
It actually shows the change in the interval velocity from the starting model to the final
model. A large shallow anomaly is clearly visible; Figure 8 shows it to be a positive

slowness (low velocity) anomaly.

Figure 9 shows the velocity anomaly that I determined by inverting picked stacking
slownesses. This result is from my other paper in this report (Toldi, 1984). Clearly, the
iterative algorithm has produced a result that is very similar to that derived from the

picked stacking slownesses.

I examine the velocity model of Figure 9 in great detail in my other paper in this
report. I will only summarize the results from the other paper, because of the similarity
of the two derived models, The analysis shows that after the effects of the laterally vari-
able part of the calculated interval velocities have been removed, the traveltimes and
velocities are almost laterally invariant. Thus, the models shown in Figures 8 and 9 are

quite successful at explaining the laterally variable velocities in the field dataset.
FURTHER DISCUSSION

Accelerated methods

It is well known that steepest descent (or ascent) algorithms can converge quite
slowly (Luenberger, 1973). Various optimization methods are available that converge
more rapidly: among them, the conjugate gradient algorithms are particularly attractive.

I am currently doing some preliminary tests with a conjugate gradient algorithm.

A priori information

The algorithm presented here does not allow a-priori information to be incor-
porated. This can be easily remedied by the addition of an extra term to the objective

function. One can define a new objective function P’/ (m)

P! (m) = P(m)-~(m-mg)" Cp (m - my) (18)
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FIG. 7. Contour plots of semblance as a function of stacking slowness and midpoint for
the reflectors at times: a) .5 seconds, b) .94 seconds, c) 1.16 seconds, and d) 1.34 seconds.
The solid lines through each of the planes are the stacking slownesses corresponding to
the successive models in the iterative process.
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FIG. 8. Slowness model derived through the iterative process. This figure shows the
change from the starting model to the final model.
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FIG. 9. Slowness model derived through the pick-based process. This figure shows the
difference between the starting (i.e. background) model and the final model.
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where my is the a-priori model. C,, is the a-priori model covariance, taken here to be
diagonal. Its elements determine how strongly the algorithm should try to hold to the
mitial starting model. With this new objective function, the algorithms can be
developed exactly as before. Adding a-priori information stabilizes an inversion pro-
cedure (Jackson, 1979), This damping should prove quite important in the accelerated

ascent methods.

Traveltimes revisited

The success of the gradient algorithm shown in the last section suggests that a
similar algorithm might be appropriate for the traveltime problem. Because of the for-
mal similarity between the traveltime and stacking slowness methods, most of the equa-
tions of the velocity analysis algorithm can be directly transferred when the simple sub-

stitution of t for w is made. Thus,
VP = GT y,P
where now:

ot
G = 2
om

The gradient, P, can once again be calculated with a finite-difference method.

For the traveltime problem this calculation consists of determining how the stack
power changes if a traveltime is changed. That is, for the j* traveltime (the traveltime
to a particular reflector, for a particular midpoint and offset)

(VeP); =~

AP ] (19)
i

At

P;i(t; + At) - P;(t;)
At

P; is the power in the part of the stack that is affected by the 7™ traveltime.

CONCLUSIONS

The formulation of velocity analysis as an optimization problem has led to an
efficient algorithm that does not require picking. This method has been tested on a field

dataset that shows strong lateral variation in the velocities. The resulting velocity
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model quite successfully explains the observed traveltimes.
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