35

Median spectra

Marta Woodward and Joe Dellinger

INTRODUCTION

This paper addresses the problem of finding a single representative spectrum for a
group of traces. While motivated primarily as an academic exercise, its observations
are pertinent wherever a single spectrum might be used to genmerate a minimum phase
source wavelet or prediction error filter for a larger data set—e.g., in the design both of
source wavelets for synthetic modeling and of prediction error filters for surface consistent
deconvolution. Six possible solutions to the problem are implemented below on the three
dynamite-generated shot profiles illustrated in Figure 1. The methods fall into two main
groups according to spectral estimation technique. The four methods composing the first
group produce spectral estimates for each trace through zero padding and fast Fourier
transformation; they assume the traces are zero outside the recorded interval. The two
methods composing the second group produce spectral estimates using Burg’s maximum
entropy spectral estimation algorithm; they make as few assumptions as possible about
the data outside the recorded interval. Within each group the methods are distinguished
by the ways in which they combine spectral estimates from individual traces.
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FIG. 1.

Three dynamite-generated, .002 msec sampled shot profiles donated by Western

Geophysical. The traces have been gained through multiplication by 2.
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FOURIER TRANSFORM/WINDOW METHODS

Mean versus median

The first two methods in this group combine raw spectral estimates from individual
traces into a single representative estimate by selecting either the mean or median power
at each frequency. Because power is always positive, these operations guarantee formation
of a power spectrum. The results of implementing these methods on the data sets of Figure
1 are shown in Figures 2, 3 and 4; the final spectra have all been normalized such that
their integrated power equals one. Comparison of the illustrated mean and median spectra
yields two conclusions: first, the mean method clearly demonstrates a greater contribution
from low frequency ground roll and high frequency background noise; second, the mean
appears smoothed relative to the median—varying less from sample point to sample point.
Both these results are typical of the classic differences between means and medians.

The first contrast is most striking for Hwz.25, that data set which exhibits the
strongest contribution of low frequency ground roll on its inner traces. (See Figure 5 for
illustrations of the median spectra corresponding to the ground roll-dominated four inner
traces of Hwz.05 and Hwz.25.) Because ground roll appears as overwhelming, anomalous
energy on the frequency spectra of the affected traces, it significantly increases the mean
spectral power at frequencies characteristic of ground roll relative to those characteristic
of reflected energy; because ground roll affects only a minority of the traces, its impact on
the median spectral power is much smaller. Similar argnments explain the relatively larger
high frequency content of the mean as compared to the median spectra. Indeed, the small
high frequency spikes appearing on the mean spectrum for Hwz.25 may each be attributed
to a single anomalous spike appearing on one of several otherwise normal trace spectra.
The robustness of the median—-its insensitivity to anomalous frequency content affecting
only a small proportion of the traces—makes it superior to the mean as an estimator of a
group spectrum.

The roughness of the median relative to the mean results from the fact that a mean
weights and sums data while a median selects a single value. Jumping discontinuously as it
picks one data point from one spectrum and the next from another, the median preserves
the true trace to trace variability in frequency content. Figure 6 demonstrates just how
little inclination the median has to follow any particular trace spectrum: the top plot
shows which trace’s spectrum contributed the median value at each frequency for data
set Hwz.25; the bottom plot shows how often each trace’s spectrum was chosen in the 0
to 125 Hz range. It is hard to find more than a few cases in the entire figure where the
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Mean Ampl i tude Spectrums Hwz.05

0.4
1

Amp 1 | tude

0.2
i

0 100 200
Freguency (Hz)

Median Ampl i tude Spectrums Hwz.05

0.4
]

Amp1 i tude

.2

J .

0 100 200
Frequency (Hz)

FIG. 2. Mean and median amplitude spectra for data set Hwz.05, calculated from
unnormalized trace spectra. The plotted spectra have been normalized such that their
integrated powers equal one.
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FIG. 3. Mean and median amplitude spectra for data set Hwz.25, calculated from
unnormalized trace spectra. The plotted spectra have been normalized such that their
integrated powers equal one.
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FIG. 4. Mean and median amplitude spectra for data set Hwz.35, calculated from
unnormalized trace spectra. The plotted spectra have been normalized such that their
integrated powers equal one.
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FIG.5. Median amplitude spectra derived from the unnormalized, ground roll-dominated
four inner traces of data sets Hwz.05 and Hwz.25, respectively. The plotted spectra have
been normalized such that their integrated powers equal one.
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Trace Number

Number of Times Used

FIG. 6.
spectrum for that data set. The top plot shows which trace’s spectrum served as the
median value at each frequency; the bottom plot shows how many times each trace’s
spectrum value was picked as the median for the range of frequencies from 0 to half the
Nyquist.
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same trace served as the median twice in a row. The figure also shows the median operator
discriminating against ground roll and garbage traces (such as traces 2 and 48). Given that
all of the median and mean spectral estimates derived above would require smoothing for
transformation into suitably short deconvolution operators, the roughness of the median
is of very little significance.

Normalized versus unnormalized input trace spectra

The second two methods in this group correspond to implementation of the median
and mean methods on trace spectra that are individually normalized prior to combination.
Comparison of the resulting median and mean spectra shown in Figures 7, 8 and 9 reveals
fewer pronounced differences than in the previous case at low frequencies. Because normal-
ization of individual trace spectra with respect to integrated spectral power is equivalent to
trace balancing, the occasional spectral peak reflecting large amounts of anomalous ground
roll energy has been reduced in magnitude—causing the mean to more closely resemble
the median. Accompanying this advantage are several disadvantages equally associated
with trace balancing: first, the extra step requires extra computation; second, the method
depresses valid frequency content along with high magnitude noise components on affected
traces; third, the technique introduces the risk of amplifying bad (low signal to noise ratio)
traces. This last disadvantage appears most noticeably in the mean spectrum for Hwz.25
(Figure 8). Due to the presence of several near dead traces in the data set, the high
frequency noise content has been amplified instead of reduced.

BURG ALGORITHM METHODS

Burg median amplitude spectra

The first method in this group is the Burg algorithm equivalent to taking the median of
normalized spectra described above. Because the Burg algorithm generates prediction error
filters in the time domain, the spectral estimates exhibited in the tops of Figures 10 and 11
were calculated by taking one over the amplitude spectrum of the appropriate, normalized
inverse filter. Because these filters have only been calculated out to 128 points—a more
than reasonable length for deconvolution operators—their 128 point inverse spectra are
much smoother than those derived in the previous section. Nevertheless, it is clear that
their overall shapes correspond closely to those of the median spectra of Figures 2, 3,7 and
8.
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FIG. 7. Mean and median amplitude spectra for data set Hwz.05, calculated from nor-
malized trace spectra. The plotted spectra have been normalized such that their integrated
powers equal one.
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FIG. 8. Mean and median amplitude spectra for data set Hwz.25, calculated from nor-
malized trace spectra. The plotted spectra have been normalized such that their integrated
powers equal one.
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FIG. 9. Mean and median amplitude spectra for data set Hwz.35, calculated from nor-
malized trace spectra. The plotted spectra have been normalized such that their integrated

powers equal one.
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FIG. 10. Two different median amplitude spectra calculated using Burg’s method for
data set Hwz.05. The median of the Burg amplitude spectra calculated trace by trace is on
top. The lower spectrum was calculated using Muir’s interleaved median/Burg algorithm
method. The plotted spectra have been normalized such that their integrated powers equal
one.
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FIG. 11. Two different median amplitude spectra calculated using Burg’s method for
data set Hwz.25. The median of the Burg amplitude spectra calculated trace by trace is on
top. The lower spectrum was calculated using Muir’s interleaved median/Burg algorithm
method. The plotted spectra have been normalized such that their integrated powers equal
one.
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Muir’s Burg median

A second, more elegant method for combining Burg algorithm generated trace spectra
has been suggested by Francis Muir. Recognizing that the motivation for all these methods
is the determination of a common spectrum shared by a group of related traces, he has
pointed out that instead of constructing separate prediction error filters for each trace
independently, an ideal algorithm should construct a single prediction error filter for all
traces simultaneously.

The recursive nature of Burg’s algorithm makes this construction possible. Burg’s
method produces minimum phase, minimum-squared-error prediction error filters of in-
creasing length by invoking the Levinson recursion. Each step of the Levinson recursion
combines a prediction error filter of length n with a parameter called a reflection coeffi-
cient (or C for short) and returns a prediction error filter of length n+1. This filter is then
used in Burg’s algorithm to construct the C required for determination of the next longer
prediction error filter. For the filter produced by the Levinson recursion to be minimum
phase the C’s must all lie between plus and minus one; the Burg algorithm guarantees that
every C has this property.

Francis Muir’s method proceeds by sequentially applying Burg’s algorithm to every
trace in a data set at each recursion, thus generating a vector of C’s representing the
entire group. It then selects a median C from this vector and plugs it into the Levinson
recursion, prodncing a single prediction error filter for common use on all the traces in
the subsequent step. Because every C in the domain of the median falls between plus and
minus one, this median C also falls between plus and minus one, and the new prediction
error filter is again guaranteed to be minimum phase. The procedure is repeated until the
filter achieves some predetermined required length.

The results from application of this method to data sets Hwz.05 and Hwz.25 are
illustrated in the lower halves of Figures 10 and 11. The process produces a median
estimate of the spectrum very similar to the other median methods discussed above. As
with the other Burg method, comparison with the Fourier transform/window methods is
difficult given the short lengths of the prediction error filters.

CONCLUSIONS

The first section of this paper produced practical examples showing the superiority
of robust median methods over mean methods in generating single spectral estimators
from large numbers of related trace spectra. Distinction between the median methods

on similar grounds is more difficult. For this purpose prediction error filters of several
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50 Woodward and Dellinger

lengths generated both by the straightforward median approach of the first section and
by Francis Muir’s interleaved median/Burg algorithm method of the second section were
used to deconvolve the original data sets. Unfortunately, no significant differences were
immediately apparent between the resulting “deconvolved” shot profiles.

As far as computational efficiency, note that in calculating the C’s Muir's method
requires the same amount of computation as the first Burg method, where the full array
of C’s are generated for each trace. For large data sets Muir’s method requires more disk
I/O than the first method, since the former can work on one trace and then discard it,
while the latter uses every trace at each step of the iteration. Whether the extra run time
required is worth the better model remains an object of research. Since the fast Fourier
transform methods were done in an array processor and the Burg methods were not, it is

not clear which of these two classes is more computationally efficient.
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