Surface-consistent deconvolution
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INTRODUCTION

Deconvolution methods are based, by and large, on a single trace model: a
random white reflectivity sequence is convolved with a stationary, or slowly vary-
ing, waveform and contaminated with noise and measurement errors. The object,
of the method is to recover, as far as possible, the original reflectivity. In
many cases more data than just a single trace are needed to stabilize in the
presence of noise; spatial averaging over nearby traces having, presumably, the
same shot waveform or multiple reverberation pattern is used to form an aver-
aged signature. Several examples of such averaging have been reported in the

literature (Otis and Smith, 1977; Sicking, 1982.)
Recently Taner and Koehler (1981), Morley (1982) and Pollet, et al. (1982)

employed surface-consistent spatial averaging in their deconvolutions. In this
model the reflectivity is assumed to have been convolved with three successive
filters - the shot waveform, a multiple reverberation pattern, and a last record-
ing and instrumentation filter. These workers (staticsticians?) applied the tech-
niques of surface-consistent statics to decompose the data in the log spectral
(cepstral) domain, the primary difference being that Pollet, et al.’s homomorphic
deconvolution used phase unwrapping to generate the imaginary part of the log
spectrum while the others, assuming minimum phase filters, used the Hilbert
transform to create the imaginary part. Sword (1983) attempted direct surface-
consistent decomposition of phase-unwrapped data treating the phase ambiguity
as a linear programming problem with disappointing results. Rothman (private
communication) believes that Monte-Carlo methods he applied to the statics
problem could be successfully adapted to Sword’s approach. Phase unwrapping
is not really the issue, Tribolet’s adaptive method or any one of three other
methods described in Oppenheim and Schafer (1975) will do a good job. The

problem is the large influence of noise and measurement errors on the phase

spectrum.
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The widespread and successful use of surface-consistent solutions to the stat-
ics problem is a powerful reason to suppose surface-consistent deconvolution has
a similar broad range of application. Indeed a static correction is a simple
one parameter time-shifting filter and so surface-consistent statics is a special
case of surface-consistent deconvolution. Donoho’s discussion of minimum entropy
deconvolution (1981) gives additional reason to expect surface-consistent spatial
averaging to produce superior results. There he proves that whenever the origi-
nal white reflectivity is non-gaussian it is possible to identify (up to a time
shift and a scale factor) any wavelet that has been convolved with it. Simply
averaging spectra over, say, common shot gathers is not enough; we cannot gen-
erally expect a good waveform estimate when the underlying traces are still con-
volved with unknown, spatially variable wavelets. Using surface-consistency
allows more confidence that the underlying reflectivities we estimate are truly

white.

DISCUSSION

Surface-consistency is an algebraic condition. Invariably this reduces to
overdetermined and underconstrained parameter variations. For the statics prob-
lem, the solution is only determined up to arbitrary constant time shifts that
may be added to, say, the geophone component and simultaneously subtracted
from the shot component. Sword noted that the same applies at each frequency
of his frequency dependent statics approach - an arbitrary (complex) constant
may be added to the log spectrum of one component and subtracted from
another.  That is, surface-consistency by itself only determines the separable
components up to some constant filter. Estimating the surface-consistent effects
could be accomplished as with residual statics; relative trace-to-trace shaping
filters would be decomposed into surface-consistent components to balance near-
surface weathering effects. This process I'll term residual deconvolution although

it doesn’t rely on any statistical assumptions or measured wavelets for the data.

Separate residual deconvolution may offer some advantages over full surface-
consistent deconvolution. First, it deals with a smaller amount of data, a short
shaping filter replaces each trace in the input. Second, the output of the pro-
cess 1s now “surface-inconsistent’” making sensible the goal of constraining either

pre- or post-stack deconvolution operators to be slowly varying functions of mid-

point.

SEP-41



Surface-consistent deconvolution 3

This latter idea seems not to have appeared in the literature yet, but is
the most direct extension of residual statics where trace-to-trace differences are
what are decomposed. Instead of time shifts determined by trace to trace
correlation, trace to trace shaping filters are computed.  These, presumably

short, filters would then be decomposed in a surface-consistent manner.
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PROPOSED STUDY

In this project I will study the behavior of a number of different deconvo-

lution algorithms generalized to the surface consistent setting. My goals are to:

1)

Develop iterative surface-consistent algorithms without resort to the cepstral
domain with its need to make specific phase assumptions and poor control
over the time duration of the resulting wavelets. From a statistical
viewpoint, treating each frequency independently introduces very many free
parameters in the problem to (poorly) estimate. Constraining the time
duration of the wavelets to be estimated usually makes physical sense as
well.  Surface-consistent static solutions are computed iteratively by succes-
sive spatial averaging over source, geophone, and offset gathers until conver-
gence is attained. Following Claerbout (1982b), T will apply this same
approach to surface-consistent deconvolution. As he points out, this treats
the problem in its multiplicative form where phase unwrapping is not at
issue. This is both straightforward and natural. The difficulties will be to
find a good measure of convergence, methods of under and overrelaxation to
improve convergence, and to decide whether the answer converged to Is

correct or at least an improvement over no processing at all.

Investigate preprocessing by temporal and spatial prewhitening (divergence
correction; gain; NMO; trace balancing; prefiltering and smoothing).  Classi-
cally these are applied to make a gather’s statistics more stationary. Claer-
bout (1984a) argues that spatial whitening can improve temporal deconvolu-
tion by strengthening the contributions of lower amplitude primary reflec-

tions and diffractions to wavelet estimation.

Judge on theoretical and empirical grounds stability, convergence, and sensi-

tivity to noise/static errors/measurement errors. Here the log linear model

-provides a starting point. Marcoux (1981) gave a Fourier analysis of the

surface-consistent linear model justifying, among other things, the sinusoidal
eigenfunctions that Wiggins, et. al. (1976) found empirically. Exponentiating
such sinusoidal summands gives quite a variety of periodic multiplicative
filter components as illustrated in Figure 1. We see the exponentiation of
the amplitudes sharpens peaks and troughs and flattens the areas inbetween.
While these provide some feel for what surface-consistent deconvolution can
produce, they might also be misleading as the statics solution, with its reg-

ular sinusoidal variations, estimates spatial variation of a one-parameter
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(time-shifting) filter. The present problem generalizes this to multi-parame-
ter filters and so I expect analogous variations to appear in its solutions

even if they are not eigenmodes.
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FIG. 1. exp{ A exp(2miz /\)} for selected values of amplitude A. The upper
row displays the real and imaginary parts and the lower the corresponding tra-
jectory in the complex plane.

4) Study the effects of breakdown of the underlying model e.g. antenna pat-
terns and interbed multiples, non-white earth impulse response. Donoho
(personal communication) believes that estimates of the closeness of fit of
the resulting model to the data gives us independent evidence to test the

validity of the convolutional model of the seismic trace.

PROGRESS REPORT

The framework I've devised for surface-consistent deconvolution tests is sim-
ple. A survey is read and placed on disk and the coordinates of each trace

stored in core. At each iteration I specify a gather type (shot, receiver, cmp or
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common offset) and a command string. I also specify an optional plot com-
mand and frequency for quality control plots. The procedure then sorts con-
secutive gathers off to a temporary disk file and invokes the specified command
on that set of traces, replacing them with the output. All the difficult work
is moved outside this program to devising suitable deconvolution programs to

invoke with the command string.

So far 1 have worked with three different deconvolution methods: Wiener-
Levinson prediction error filtering, Burg’s maximum entropy deconvolution and
Wiggin’s minimum entropy method. For the first I adapted a single trace pro-
gram written by Dave Hale to process gathers by averaging the autocorrelations
of the individual traces, normalized to have zero lag 1, and then increasing the
zero lag of the average to 1+ ¢ for stability. (As Francis Muir pointed out,
the average of autocorrelation functions is not necessarily itself an autocorrela-
tion.) The prediction error for each window is then renormalized to the input
amplitude level for convenient comparison. Options provide for either power of
t gain and/or sliding windows to handle nonstationarity in the input data.
For the second method I employed a time-variant Burg algorithm. This aver-
ages leaky integration of the forward and backwards prediction errors to produce
time variant filter reflection coefficient estimates. The results are averaged
across each gather. Woodward and Dellinger, following a suggestion of Muir’s,
have recent results in the present volume on a robust method using medians to
average reflection coefficients, rather than traces or filters, across a gather. The
third method, minimum entropy deconvolution, I resurrected from Will Gray’s
varimax files. This program was already multichannel as experience had shown
multi-trace averaging crucial to stabilizing this algorithm. The only time vari-
ance is provided by a gain option.

A major problem that I encountered right off the bat is illustrated in Fig-
ures 2 through 10 which show stacks of a line from the Central Valley of Cali-
fornia during processing with iterative surface-consistent deconvolution. Deconvo-
lution algorithms are just not designed with repeated application in mind. 1In
an 1ideal world (Claerbout 1984b), a decon should produce its idea of the best
possible result in one run. Subsequent deconvolution should not change that
result. In these first surface consistent deconvolutions I ran the results of one
pass over shots looked very similar to the input. Iterating then over receivers
produces a noisier, less appealing image and after a couple more passes over the

survey the stack was simply awful. Changing stacking velocities was not the
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cause, I repicked velocities a couple of times without improving the results.

To understand this problem better I went back to single trace deconvolution.

I generated 28 10 fold gathers by replicating each trace in the 28 trace
CMP profile of Figure 11. This artifice allowed me to test single trace decon
using my arsenal of multitrace programs. Figures 12 through 14 show the
results of 11 iterations of the three algorithms I’ve used for a reasonable set of
parameters I chose. The side panels show some selected trace as a function of
iteration number. This illustrates that both Burg and prediction error filtering
(Pef) change noticeably for the first three or four iterations and then, at least
for this gather, converged to a final answer. Minimum entropy deconvolution
changed the data much more slowly than Burg or Pef through 11 iterations.
All of the algorithms failed the ‘“ideal” one iteration decon test. They did
however converge better than the surface-consistent iterations of Figures 2-10

which became noisier and noiser without really improving resolution.

These single channel tests also brought to light a problem in iterative
time-variant deconvolution.  Figure 15 shows repeated application of Pef with
sliding 375 msec windows. The misfeature, of course, 1s the banding which
coincides with the edges of each of the overlapping windows. This may perhaps
be seen under close scrutiny in the first iteration but is not readily apparent
until the second or third. It appeared to be related to what was happening at
the end of each window. 1 observed that at the bottom of each trace a high
frequency (Nyquist) end effect the crept higher into the trace with each itera-
tion. When these are repeatedly blended with data from overlapping windows

you might well expected trouble.

Actually the problems arose not from the ends of each window but from
the beginnings! I found this by displaying individual windows before blending.
The beginning of each window had quite high amplitude after inverse filtering
when compared to values further down in the window. Explanation? The start
of all windows but the first are overlain by the tail ends of wavelets from the
previous window. This causes large prediction errors to appear at the start of
the deconvolved window which are initially attenuated by linear ramping when
blending overlapping windows. The attenuation is not total, however, and these
artifacts build up as iteration proceeds. To get around this I now discard a
number of samples equal to the filter length minus one from the beginning of
each filtered window. Alternatively I could precede each input window with a

number of samples equal to the filter length before convolution with the
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prediction error operator. As for the end of the trace I concluded it was an

artifact of previous processing or recording.

Another problem of judging the deconvolution results of Figures 2-10 is fre-
quency content. Deconvolution wants, usually, to increase the frequency content
of a trace, occasionally to an unreasonable degree. Cosmetically, we’'d like to
compare apples to apples by reshaping the output to a reference spectrum with
frequency content similar to the input data’s. This may well be incorrect -
nonlinear estimation can correctly predict sharp spikes with frequency content
outside the range of the input data. A reasonable and simple method of com-
parison is to apply a bandpass filter. When it’s applied makes quite a differ-
ence. The  accompanying  videotape shows iterations of the form
(Pef +Bandpass )N Vs PefN+Bandpass. The former is characterized in profile
by reflectors moving continuously towards the surface of the earth, the latter by
reflectors staying still and their coda shrinking upwards to meet them. For
these examples I used zero-phase bandpass filtering; minimum phase bandpass
filtering would have reduced these differences at least for the minimum phase

algorithms 1 employed. Time has not permitted me to rerun these comparisons

yet.

At this stage I've found single trace deconvolution, either before or after
stack, to be superior to surface consistent decon for these data. A lot of the
difference is, I think, due to the iterative approach I'm employing. One of my
next steps will be to compare it to Morley’s approach for the Flemish Cap data

he used in his work.

REFERENCES
Claerbout, J.F., 1982, Imperfectly separable models: SEP-30, p. 159-168.

Claerbout, J.F., 1984a, Spatial whitening improves temporal decon filter: SEP-38,
p. 51-69.

Claerbout, J.F., 1984b, Deconvolution essays: SEP-41, p. 27.

Donoho, D.L., 1981, On minimum entropy deconvolution: In Applied Time Series
Analysts II, D.F. Findley, ed., Academic Press, p. 565-608.

Marcoux, M.O.; 1981, On the resolution of statics, structure, and residual normal
moveout: Geophysics v.46, p. 984-993.

Morley, L.C., 1982, Predictive techniques for marine multiple suppression: Ph.D.
thesis, Stanford University, Stanford, California.

Oppenheim, A.V. and Schafer, R.W., 1975, Digital signal processing: Prentice
Hall, Englewood Cliffs, New Jersey.

SEP-41



Surface-consistent deconvolution 9

Otis, RM., and Smith, R.B., 1977, Homomorphic deconvolution by log spectral
averaging: Geophysics, v. 42, p. 1146-1157.

Pollet, A., Lowrie, L., and Matthews, J., 1982 Vibroseis deconvolution - a sur-

face consistent method: (preprint) presented at the 52nd annual SEG meet-
ing, Dallas, Texas.

Sicking, C.J., 1982, Windowing and estimation variance in deconvolution: Geophy-
sics, v. 47, p. 1022-1034.

Sword, C., 1983, The generalized frequency-dependent surface-consistent statics
problem: SEP-35, p. 19-41.

Taner, M.T. and Koehler, F., 1981, Surface consistent corrections: Geophysics v.
46, p. 17-22.

Wiggins, R.A., Larner, K.L., and Wisecup, R.C., 1976, Residual static analysis as
a general linear inverse problem: Geophysics, v. 41, p. 922-938.

Woodward, M. and Dellinger, J., 1984, Median spectra: SEP-41 p. 35.

SEP-41



10

Levin

g, Vstot G Py, S ad, -
e e i A
_;..ﬁ.. :‘* ] %{g"!‘. *,“ﬁ¥‘ -@W-,Y:__
~ MMM,K.:‘V‘__‘
wighy -

WPTa

g 7= " :
ki fhoy ,‘-‘a: "
AP+ A > O eg QIR " .\ Saagle
o Sgngma. ;. Kb o
uwwnJ
- P

(Raw)
FIG. 2. Stack of undeconvolved input to surface-consistent deconvolution.
There were 275 28-fold CMP gathers in the dataset.

Trace length is 5 seconds
sampled at 4 msec. These data are from the San Joaquin valley. The sag
and decreased amplitudes in the center of the section are due to g low-velocity
near-surface anomaly.
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FIG. 3. Stack after one pass of Wiener prediction-error filtering over shot gath-

ers. A single 128 msec spiking filter was generated for each gather from the
average autocorrelation across the gather.
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FIG. 4. Stack after a iteration through common-geophone gathers.
the common-shot iteration shown in the previous figure.
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FIG. 5.  Stack after another pass,
Note this is not surface-consistent.
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this time over common-midpoint gathers.
I include it in this example for more direct

comparison with single-trace spiking decon shown below in Figure 10.
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FIG. 6. Stack after another
quency noise is quite visible.
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iteration over
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FIG. 7.  Stack following a second iteration over common-geophone gathers.

Even more high frequencies but not much compression of the reverberatory
reflections.
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Stack after a second iteration over over CMP’s.
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FIG. 9. Stack of original gathers after conventional single-trace spiking deconvo-
lution.  Deconvolution has done a good job, despite the fact that the source
was Vibroseis.
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FIG. 10.  Single trace spiking decon applied to SG stack in Figure 4.
result is nearly identical to single trace decon before stack (Fig. 9).
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Input common-midpoint gather used in trace-by-trace iterative deconvo-

lution tests. This CMP is from the section in Figure 2.
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FIG. 12. CMP gather after 11 iterations of spiking deconvolution. t2? gain was
applied prior to deconvolution. On the right I show a single trace from that
gather as a function of iteration number. We see that after the fourth itera-
tion the changes to the trace are imperceptible.
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FIG. 13. CMP gather after 11 iterations of Burg deconvolution.
applied prior to deconvolution.
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FIG. 14. CMP gather after 11 iterations
The changes are much less apparent than
close examination of the iterated trace on
phase compression of some of the stronger
here I iterated a few more times and got
only two iterations later.
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of minimum entropy deconvolution.
either of the previous two figures bu
the right shows a very gradual zero-
reflectors. In a later test not shown
a marked increase in high frequencies



Surface-consistent deconvolution 23

il

TR

i d

FIG. 15. Spiking deconvolution using overlapping 375 msec windows instead of
t? gain. The banding occurs at the window boundaries. As can be seen from
the iteration panel on the right, it becomes noticeable after three iterations.
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FIG. 16.  Spiking deconvolution with overlapping 375 msec windows when a
number of samples equal to the inverse filter length is dropped from the begin-
ning of each deconvolved window before blending.
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FIG. 17. Bandpass filtered version of Figure 12. The purpose of the filtering

is of course to suppress high-frequency noise that was boosted by the deconvolu-
tion.
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FIG. 18.  11th iteration of zero-phase bandpass filtered spiking deconvolution.
The single trace panel clearly shows the problem with this scheme.
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