Chapter iV

Velocity Stack Generalized Inverses

4.1 The problem

The previous chapter presented the main features of pseudoinverse theory for
slant stack operators. A linear transformation more appropriate for use on seismic
data, in particular common-midpoint gathers (CMGs), is normal moveout and stack-
ing. For example, one of the two most common methods used to determine average
velocities from a CMG is to perform a velocity stack; i.e., to sum the CMG over
hyperbolic paths corresponding to a set of velocities. Peaks in the velocity panel
are a result of constructively summing a reflection along the moveout corresponding
to its average velocity. The other, more common way to determine average veloci-
ties is to replace the summation with a semblance measure; however, this method is
a nonlinear one, because semblance measurés involve products of the gather's ele-
ments (Douze and Laster, 1979). In this chapter we shall restrict ourselves to the
linear operation of velocity stacking, and address the same questions to the veloc-
ity stack that were answered in chapter 3 with respect to the slant stack: namely

the questions of invertibility and the nature of the generalized inverse.

Recall that velocity stacking was defined in chapter 2 by equation (2.30), one

of a pair of mutually adjoint linear transformations L, LT
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o0

L: d(h,t) = fdp u(p, VI? — p?h¥) (2.29)
0

L7 ulp,7) = fdh d(h, VT? + p*h?) (2.30)
0

It must be emphasized that in order for these symmetric definitions of L and L7 to
be mutually adjoint, the inner products in both offset and velocity space must be
defined with a linear weighting in time (equations 2.24 and 2.25). If (u, W),
denotes the inner product of two functions u(p,7) and & (p,7) in velocity (V) space
(a similar notation is made for the inner product in offset (/) space), the relation-

ship that defines the adjoint operator is

(u, LTd), = (d, Lu)y (4.1)
The following discussion will involve those versions of the velocity stack operators

that have finite limits in velocity and offset:

Pz

P,L: d(h,t) = fdp w(p, Vit? — p?h?) (4.2)
P,
ha

L7Py: w(p,7) = fdh d(h, VT? + pPh?) (4.3)
by

As was done in chapter 2, these truncations may be incorporated into the projec-

tors P, and P,;. Furthermore all slownesses and offsets considered within range will

be positive:
1 O<p,<p<p; <=
P (p,m) = 0 otherwise (4.4)
1 O<sh;<h<hg<w=
Pa(h,t) = 0 otherwise (4.5)

In this chapter we shall be concerned with solving the so-called "type |'' prob-

lem of section 2.6: solving for u in the equation

d = P;LP,u+n (2.32)
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in chapter 3, a reasonable constraint was imposed on the solution u: it is nonzero
only between slowness limits p, and p, (equation 3.3). We shall make the same
assumption here so that the term P,, need not be carried about in the equations; it

will be incorporated into L.

Recall that the generalized inverse solution to the type | problem is

u = LTPzL)*LTP,d (4.6)
Let us now follow a development similar to that of chapter 3, to derive the filter
(LTP,,L)‘f. Unfortunately we will run into some snhags along the way, but with the aid
of the theorem of section 2.7, these problems may be overcome. Later in the
chapter, we will illustrate the application of the generalized inverse filter to both
synthetic and real data sets. The example of figure 1.2 was generated using the

generalized filter derived here.

4.2 The impulse response of L7P L

The first step in deriving the generalized inverse is to find the impulse
response of LTP,L. From equation (4.2), the response L& to an impulse
d(p-p)s(t—Natp =p, 7=Tis

(V2 —p%h? - )

1l

d(h,t)

i

-Zid(t - VR 1 p%h?) (4.7)

Here we use a theorem on changing variables in a Dirac delta distribution (Bracewell,

1965, p. 95) which states that

6(z — x;)
5(F (=) = Z Traa (4.8)

where z; are all the roots of f(z): f(z;) = 0. If the range of the integral contain-

ing 6(f (z)) is restricted to exclude some roots z;, these terms will not be included

in the sum of equation (4.8). Likewise, when P is outside the range of (p, pz) the
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response d(h,t) is obviously zero. The impulse response LTPdLG is found by apply-

ing LYP; (equation 4.3) to L& (equation 4.7):

ha
) fdhefd(t £) t=NT 4 ptht (4.9)
wlpor) = ) dh ol - P = N1 R :
1

The delta function 6(f — ) is nonzero for a unique offset h? = h&, and can be
transformed into a delta function in h in order that the sifting property of the Dirac

delta distribution may be used:

heg
¥ t 6(h —h
ulp,m) = fdh It (2 N;’) (4.10)
/ t ho |p? —p°|
1
where
2 _ 2
hg = — T (4.11)
p*-p

Now at h = hg, fis equal to £. The sifting property allows us to set . equal to the
integrand, except when h; falls outside the range of (hv hz). When this occurs,
u(p,T) is identically equal to zero. Taking this fact into account, and substituting
for hg , the impulse response LTPde from equation (4.10) becomes:

H[ho - hf]HPzg - ho]
2| 1/2

u(p,7) = 7 (4.12)

lpe _52|1/2|Tz _':f.'
where H(z) is the unit step function. The nonzero parts of the filter are bounded
by the curves hg = hlz and hg = hgz, which pass through the origin; hq is the func-

tion of p and T given in equation (4.11).

Using the impulse response of equation (4.12), we can write the transformation

L7P4L in integral form:

w(p,r) = ffdﬁ‘ dF ¥ K(p? — 9%, 2 - ) (D (4.13)
0
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where the kernel K is

K(z,y) = |zy| V*H

_Zl___hIZ
z

hg — ﬂ (4.14)

The kernel is illustrated in figure 4.1.

4.3 The generalized inverse in the p?, 7° domain

The next step, as it was in the case of slant stacking, is to get the kernel of
L7P4L in convolutional form, in order that the kernel of the generalized inverse may
be determined in Fourier space. The kernel is non-convolutional in p and 7, but
apart from the factor ¥, can be made convolutional by the obvious transformation to

2

independent variables z = p2 and y = 7°. This is the only practical way that the

generalized inverse can be determined. This change of variables transforms equa-

tion (4.13) into

ul(z 2 yi9 = f

The Fourier transform of the kernel X in equation (4.14) turns out to have a

Kz -2,y —§) 2(F17 51 (4.15)

(=)

],

56

N [

ﬂZF@Z
-

simple expression:

H

K(&m)

_[fdz dy |zy|*1/2H[—g——hi? hE + ﬂe—“x—iw
hE — (4.16)
n

The symmetric definition (3.13) of the Fourier transform has been used. Recall that

H

tl

2ﬂ|£nl"’zﬂ[£——h?

the extra 27 factor results from using equation (3.18), the rule for transforming

convolutional kernels into the Fourier domain. The generalized inverse is defined to

hE — % (4.17)
Ui

be the inverse of the nonzero region of the filter.

Krem = ;;;I £n| ”2H[f’—— hf
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Velocity Stack Impulse Responses
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FIG. 4.1. Velocity stacking impulse responses. The left panel is the response
LTPstS to an impulse centered in the p,T plane shown. The curved truncation edge
is due to the unit step terms in equation (4.12). Considered as a two~-dimensional
filter, it is not stationary: it varies both in time (7) and slowness (p).

The right panel is the generalized inverse (L7L)*, derived in section 4.3; the offset
limits used in its derivation were (h,, hp) = (0, =), respectively. It is a p- and 7-
variable filter. The filter is strictly positive in quadrants Il and IV of the p, 7 plane;
zero in the other two guadrants; has large negative values on both axes, and an
even greater positive value at the origin. Because the sign of the filter changes
upon crossing the p, T axes, the generalized inverse acts very much like a differen-
tiator in both p and 7.

The inverse Fourier transform to (4.17) is derived in appendix 4.A, and is, for

(z,y) #(0,0),
+ - -3/2 g|_Y_ _p2 2
K (zy) 16Trzlxyl H . thh2+x
i LR DI 6y + rdz) - 6y + hz) |
*—4;ImﬂﬂﬂamW)bTy+h&)—&w4Jﬁm] (4.18)
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Though it looks rather formidable, this filter can be easily described. It is restricted
to be nonzero between the "edges" of the filter: the curves y = —h?%z and
Yy = —hzzx. In the interior of this region the filter coefficients are given by the first
term, |zy | 3/%2/ 161 The two remaining terms contain deltas and delta deriva-
tives, and apply only at the edges of the filter. These edge terms can be con-
sidered as necessary to satisfy the various zero-DC-component constraints

imposed by the Fourier-space version of the filter. These constraints are

(]

0 for ¢=0 fdx KHz,y) = 0 forally

—o0

K(¢m)

0 forn=0 fdy K'(z,y) = 0 forallzx (4.19)

]

Er(em)

It is not clear what K*(z,y) should reduce to as the aperture is widened to the
largest possible range of offsets, h; » O and h, » ~. But regardless of the aper-
ture, the constraints in equation (4.19) still apply. They may be used to determine
the coefficients on the z axis (h; = 0), the y axis (h; = =), and at the origin in a
discrete implementation of the full aperture filter. For example, the interior of the
filter lies in quadrants Il and IV of the z,y plane, and is proportional to |zy | ~3/%.
To satisfy constraints (4.19), coefficients on the x and y axes must be large
negative numbers (in the continuous case they are proportional to |&|"1/%6(s) as
g -+ 0). Finally, the value at the origin must be an even larger positive value, to

guarantee that the filter has no overall DC component.

The kernel can be brought back into the p,7 domain by a change of variables

(compare this to equation 4.15):
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172 .1/
'U.(Z’ 4},’3 2) - ﬂ K*(z — 5, y - ,ga) A 51/2’ ,571/2) dfdg (4.20)
0

ulz,y) = ff16pﬁ?1(*(p2-—f>‘2,’rz—'?2)1'2‘(;“)‘,'1"‘) dp d¥  (4.21)
4]

The various kernels in p,T space are summarized in table 4.1. The infinite-aperture

impulse response of the generalized inverse (LTL)* is also illustrated in figure 4.1.

4.4 Infinite~aperture versus finite-aperture filters

The filter (LTP4L)* derived in the last section is not a generalized inverse in
the strict sense defined in chapter 2, because it was necessary to perform a =, p2
mapping before the Fourier transform could be taken. Nevertheless it is a true gen-
eralized inverse in the remapped domain. Let us now put this filter in the operator
notation of section 2.7, and address the following questions. What is the relation-
ship between the inverses of table 4.1 and the slant stack inverses of table 3.17
Does the theorem of section 2.7 hold, so that (L'L)* may be used in place of
(L7P4L)* in practice?

The generalized inverse was derived by the following steps: change variables,
transform the kernel to the Fourier domain; invert the nonzero singular values;
inverse transform; and undo the change of variables. Each of these steps is linear.

The change of variables z = p?, y = 77

is an invertible linear transformation S, and
is necessary to allow the diagonalization of the operator by the (unitary) Fourier

transform:

L7PyLu = s 1uzRuTswu (4.22)
UT is the forward Fourier transform. X? is diagonal (multiplicative); it consists of
the values of the Fourier-transformed kernel given by equation (4.16). There is an
additional diagonal weighting W, which represents the prescaling of & by 1/ 4% in

equation (4.20). According to strict definition, this decomposition of LTP4L is not a
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Velocity Stacking Filters
Offset
Filter Range Kernel K(p,7; §,7)
LTP4L | Ry, ke N H[ho - hf] H[hg —ho]
|p2 _rﬁzll/lez _?ZII/Z
L7L 0, © -~ H(hy)
T Ipz _ﬁzl 1/2I7.2 _?Ell/z
(LTPGLY*| hy, by o H[ho - h?] H[hg - ho]
2/ + edge terms?
172 Ipz__ﬁazla/ZITz__;Falsxz
(L7L* | 0, = DT H(hg) 5
= — + edge terms
m o |p? - pF|E| 12 - 7|
Notes: 2 _ 2
1. hy = — Tz - T
b —p

2. "Edge terms" are the last two terms of equation (4.18) with
z = p? — p? and y = ¥ — 7%, multiplied by 169pT. The kernel
is applied using equation (4.21).

3. The edge terms for the infinite aperture filter (L7L)* in the
continuous case are infinite and cannot be expressed in terms
of deltas or their derivatives. A discrete implementation of the
filter (figure 4.1) may use (4.19) to determine these points.

TABLE 4.1. Velocity stacking filters derived in the text.

singular value decomposition; but if LTP(,L does happen to have a true inverse, it

would be uniquely given by
(LTp;L)! = wls luz—?u’s (4.23)
Keeping in mind that the inner product in p,7 space is defined with weight T,

we can see that the p?, 7° stretch transformation S has the Jacobian 4p:

s’s = 4ap), therefore 87! = Z}TST‘ (4.24)

This fact makes plain the Hermitian nature of L7P4L:
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1 1
T L = 7 2117 4

Recall from chapter 3 that the slant stack pseudoinverse has the singular value

decomposition UL ?PUT; so the generalized inverse of equation (4.25) is

1 1
L7p, L)t = —s8sTux?puTs — 4.26
(L7P4L) ap z 2p (4.26)

Projection P represents the Heaviside step functions of equation (4.17). If the
system (4.26) is not in the form of a singular value decomposition (i.e., in the form
of equation 2.44), then the theorem of section 2.7 does not apply, and it is not
clear that we can substitute (L7L)* for (L”P4L)* in the generalized inverse solution
of u = (LTP4L)*LTP,d and thereby expect to get an identical estimate for u. The
reason for wanting to do so is strictly one of efficiency: (LTL)* might be easier than
(LTP4L)* to implement. It happens that it is valid to substitute (LTL)* for (LTP4L)*;

the proof of that validity is outlined below.

As we did in chapter 3, let us examine the analog to the singular value decom-
position of LTPd. Equation (2.30) can be put into the form of a slant stack, by
remapping the data domain with Z = h?, § = {2 Call this mapping S;. The model

domain is mapped into p?, ° by operator S, which transforms velocity stacking into

a slant stacking operation. In integral form, equation u = LTPdd is

o

dz

u(zue, ,yl/.?) - _Epd(h)d(fl/e, (,ga =y + x:,,’:')l/.?) (4_27)
Or in operator notation, it is
u = SIUBVTS; —P,d (4.28)
2h

where VIUT (derived in section 3.3) is the singular value decomposition of the slant
stack operator L. Because P; is a projection, it commutes with the 1/ 2h multiplier,

and is transformed by S, into the projection P’;:

Py (x) = HhE —z)H(x — hE)
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Finally, from section 3.4, VTP’d = PV7, where P is in fact identical with the projec-
tion of equation (4.26). Because of the commutivity of these various projections,

equation (4.28) may be rewritten as

u = LTPyd = S IUTPVTS, 21—h—d (4.29)

The generalized inverse is the combination of equations (4.26) and (4.29):

1 1 1
L7p,L)*'L’P,d = | —sTux?*pul’s —| |sTuzpPvTs, —d 4.30
( aL) d ap b) ap Py d5p ( )
or
1 1
¥ = WP,'L7P,d = —sTux"Pv’s, —d 4.31
(L"P4L) d ap % T (4.31)

The "infinite aperture’ version of the generalized inverse is determined from equa-

tion (4.26) by inserting the appropriate projection operator P:

(LTt = 3 _sTyun-2puTs — (4.32)
4p ap

where ﬁ(é,n) = H(¢n). Because this projection zeros out quadrants Il and IV of the
Fourier plane, it is clear that (LTL)* may replace (LTP4L)* in equation (4.30)

without altering the estimate of the inverse OI:

1 ~ 1
= (LTL)*LTPgd = —STUL~'PPVTS; —d .
¥ = (LT*LTpy 2p STULTIPPVTS, (4.33)

Recalling that PP =P completes the proof.

It was assumed in this section that $! exists. Singular points do occur at
7= 0 and p = 0, but if u is restricted to a subspace away from this region of the

velocity panel, S and the other mappings considered here are invertible in practice.

4.5 Synthetic and real data examples

The synthetic gather of figure 4.2 was generated by applying a discrete ver-
sion of the velocity stacking operator L, to a set of four impulses in the velocity

plane. The impulses represent reflectors at 1.5, 2.5, 3.5, and 4.5 seconds in a
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Synthetic Gather CV Stack LTL

of fset (km) slowness (sec/km) slowness (sec/km)
2 1 0 0.2 0.4 0.6 0 0.18 0.4 0'.6
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FIG. 4.2. Velocity stack of a synthetic gather. The panel on the left is a simple
gather (d) with 4 events on it; it was generated by applying L to four impulses in
the velocity plane that appear between 1.5 and 4.5 seconds, having a slowness of
0.4 seconds/km. The constant velocity stack L7d (center panel) was generated
from the synthetic gather. In comparison, the panel on the right was generated by
applying L7L of table 4.1 directly to the set of four impulses. The clip value (max-
imum plotted amplitude) on both velocity stacks is 10% of the maximum amplitude.

medium with a constant velocity of 2500 m/sec. The middle panel of figure 4.2
shows the result of a constant velocity stack applied to the midpoint gather. This
panel shows various impulse responses of the discrete version of LTPdL at different
zero-offset travel times. We may compare the constant velocity stack with the
continuous version of the impulse response of LTPdL from table 4.1 (rightmost panel
of figure 4.2). They are virtually identical. The main difference is the appearance of
aliasing artifacts on the discrete impulse response at the shallowest time, 1.5

seconds. The waveform used on the synthetic gather is a truncated sinc function in
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slowness (sec/km) stowness (sec/km)
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FIG. 4.3. Generalized inverses of synthetic data. The left panel is another display
of the impulse response (LTL)* shown in figure 4.1; the four impulses of figure 4.2
were used to obtain this response. Clip value of this plot is 1% of the maximum
amplitude. The right panel is (LTL)* applied to the constant velocity stack of figure
4.2. The clip value of this plot is about 5% of the maximum amplitude.

time. The sidelobes of the sinc function begin to constructively interfere at shallow
times and high stacking velocities; thus the sinusoidal nature of the response. The
lateral spread (in slowness) of the filter response may be termed the sidelobes of
velocity stacking. The edge effects from the limitation in offset (the effect of pro-

jector P;) on the synthetic gather are obvious in the constant velocity stack.

The response of (LTL)* to the impulses shown in figure 4.2, is presented on
the left panel of figure 4.3. These are variable-area plotted versions of the impulse

response shown in figure 4.1. The filter (LTL)* was designed directly from the
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FIG. 4.4. The generalized inverse applied to a common-midpoint gather. L7d is the
same velocity stack shown in figure 1.1. By comparison, (LTL)*L7d is the velocity
stack filtered with the generalized inverse of table 4.1.

formulas in table 4.1, which satisfy the constraints of equation (4.19). Apart from
the p and 7 dependent scaling factors, the filter has no DC components in either

the p or 7 directions. It functions very much like a half-derivative.

The result of applying (LTL)* to the constant velocity stack of figure 4.2 is
shown in the right panel of figure 4.3. Because of the differentiation behavior of the
generalized inverse, energy in the sidelobes has been reduced; this is the desired
effect. It should be noted that the clip amplitude of the variable-area plot of figure

4.3 is approximately one half the clip amplitude of the constant velocity stack in
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figure 4.2, so that figure 4.3 is plotted at about twice the scale factor of figure

4.2.

Turning to real data, we apply the generalized inverse to the common-midpoint
gather introduced in chapter 1: the data from the Texas Guif Coast. In figure 4.4
the velocity stack of the data, L7d, (also illustrated in figure 1.1) is compared to
the velocity stack filtered with the generalized inverse, (LTL)*L7d. Figure 1.2 com-
pares the same panels over a smaller time window of 2 to 3 seconds. The lateral
resolution of the desired velocity function has been somewhat increased by the rho

filtering step.

4.6 Summary: use of the generalized inverse

In chapters 3 and 4, expressions were developed for the generalized inverses
of slant stacking and velocity stacking. These filters may be used in two ways: to
obtain a better stack, and to obtain an extrapolation of the data by model determi-
nation. In the first case, the operator of choice to be applied to the data d is the
generalized inverse Lt given in equation (4.31). By its use, one attempts to shar-
pen the image in the velocity panel generated by the forward stack operation L.
From figure 4.2 it is easy to see how multiple events close in velocity to the desired
primaries can contribute significantly to the stack: the sidelobes from the muitiple's
response will interfere with the focused primary energy. The generalized inverse,
by sharpening up the image (suppressing the "sidelobes’ of the event) in the veloc-

ity domain, helps to separate events of differing velocity.

In the second case, we are able to extrapolate the data once a good velocity
panel L*d has been obtained. The velocity panel can then be transformed back into
the data domain with a stack operator L that has a much more finely sampled output

space.
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4.A Appendix: derivation of (LTP,L)*

To derive (L7P4L)* it is necessary to take the inverse Fourier transform of

eguation (4.17):

H

R = ff 1énll7® e _ pelpglez en 44
) = did —h h2 — iz +iny (4,
K'(zy) ant ) tdn e H " g § e (4.17)

The Fourier transform pair we use is given in equation (3.13). Let us ignore for now

the singular point at the origin, and assume that z ¥ 0 and y ¥ 0. The integrand is
nonzero in the region of the {,; plane bounded by the lines §/n =h{ and
¢/m = hg. To incorporate this region into the integration limits, change the vari-

ables of integrationto g, r:

gq=¢ rT=n/¢ dédn=|g|dgdr

so that
1/h} -
K (zy) = 8;3 f |7 ] 2dr fqqu e¥@ try) (4.A1)
1/hE ©

As a consequence of our symmetric Fourier transform pair, the Dirac delta has the

following expression in the transformed domain:

d? 1 f -2 |
v . — d s | git=x 4.A
0@ = @ = = \/Jg]e (4.A2)
Therefore
1/hf
KH(z,y) = 412 f dr |7 |26 (z + ry) (4.A3)
m 1/h§

There are "edges' to this filter because of the finite limits on the integral. Keeping
in mind that the Dirac second derivative represents a limiting sequence of integra-

ble functions, we may integrate by parts:

Rzy) = 41 _ [12 + 1, + Iy (4.A4)
w
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, 1/hi
I, = _I,,.|1/25 (z +1y) (4.A5)
2
Y T =1/h$
d oz + ry) 1/hf
I = | e T2 (4.A6)
dr Yy T = l/h,zz
1/h§
2
Iy = f —dr ——;2 |2z try) (4.A7)
1/h§ 4
Now the derivatives of |r | are
a e - 1 -1r2
I T| > |7 | sgn(r) (4.A8)
and
d? e - _ 1 -3/2 ~1/2
—E kdl = —Z—l'r | + |r] 6(r) (4.A9)

Substituting these expressions into integral /; produces

1/nf
Iy = fd'r -l—|rr3/25(“’|/ I;”') — e vesr) 2EET | (4a10)
1/h§ y y

Because 1/h22 > 0, the second term in the integrand disappears. The delta in the

first term constrains the integral to be nonzero only in the region
— — (4.A11)
h§ ¥y Ak

Within these limits, the delta sifts the integrand. Using our unit step function nota-

hE + 1;—} (4.A12)

The integrated parts of equations (4.A5) and (4.A6) are:

tion,

H

_ 1, —ss2pg|l_Y_ _ ;2
Iy = 4|273/| H e P

1

I, = |xy|~1fzsgn(y)[a'(y + h2z) — 6'(y + hlzx)] (4.A13)

I = oz |72y |72 6y +hz) — 8y +hE2)]  (4A14)
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These three terms, /,, /,, I» together with equation (4.A4) define the kernel of the

pseudoinverse (LTP;L)". The formula is summarized in equation (4.18).

The filter coefficient at z = y = 0 is needless to say unbounded for the con-
tinuous filter. If a discrete version of the filter (4.18) were designed, the constraint

that it have zero mean could be used to determine the coefficient at the origin.

- 76 -



