Chapter il

Slant Stack Generalized Inverses

3.1 Introduction

To illustrate the points made in chapter 2, we shall derive the slant stack gen-
eralized inverse (or pseudoinverse) in this chapter. We shall see that the theorem
given at the end of section 2.7 is valid when the operator L is chosen to be the
slant stack. This theorem also allows the pseudoinverse filter to be replaced by a
filter simpler in form and much easier to apply in practice: the so-called rho filter.
In the last section of this chapter, the two filters are applied to the same synthetic

data. As expected, the resultant outputs are identical.

3.2 Slant stacking

Recal! from section 2.5 that the slant stack adjoint pair, without including for

now any truncation and aliasing effects, is

oo

Slant L: d(h,t) = fdp u(p, t — ph) (3.1)
Slant LT: u(p,7) = fdh, d(p, T + ph) (3.2)

The index h (offset) has dimensions of length, and p (slowness) has dimensions of
inverse velocity. Typical sample rates in time on a gather are sufficiently high to
preclude any problems with aliasing on the time axis. The sampling in offset, how-

ever, is commonly coarse and restricted to a narrow range of offsets.
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A data set that consists of a number of coherent events of constant dip, can
be accurately modeled by equation (3.1). Furthermore, events of interest on the
data set will tend to lie within a limited range of dips, so that the function u(p,7),

which models the data via (3.1), may be assumed to be limited in p:

u(p,7) = 0 for p <p, and p > p, (3.3)
Recovering u from the incomplete data d is the type I problem of section 2.6: to
complete the formulation of this problem, projections P, and P; must be defined.
The constraint (3.3) implies the following definition for the projection P, :

1 P1=p <Py
Pp,m) = 0 otherwise

(3.4)
The constraint (3.3) is now equivalent to the statement P,u = u. However, under
this assumption, the output d(h,t) of equation (3.1) can never be bounded in h;
that is, operators L and LT are unbounded operators. Assuming that the sampling of

the data in h is adequately dense but limited to the range h; < A < h,, the projec-

tion operator Py must be defined as

1 h,<h<h,

Pd(h’t) = 0 (3.5)

otherwise

With these definitions the slant stack operators L and LT can be converted
into bounded operators by premultiplication and postmultiplication with P; and P,. If
assumption (3.3) is made, it is not necessary to explicitly carry around the term P;
from now on it will be dropped. The bounded operators P,;L and LTPd differ from
those defined in equations (3.1) and (3.2) only in the limits imposed on the

integrals:
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P

P,L: d(h,t) = fdp u(p,t — ph) (3.6)
Py
ha

LTP,: wl(p,r) = fdh d(p, T + ph) (3.7)
ky

Recall that the type I pseudoinverse defined in section 2.6 is u = (LTP4L)*L7P,d.
With the slant stack operators of (3.6) and (8.7), it can be implemented in two
steps: first stack the data with L7P;, then apply (LP4L)*. This last term could
just as well be called the pseudoinverse; in fact it is exactly thé pseudoinverse of

the operator LTP,L.

3.3 Calculating the slant stack pseudoinverse

It remains to determine LTP,L and its pseudoinverse (LTP4L)*. The pseudo-
inverse can be found because of the simple structure imposed on the truncator P;:
the orthogonal matrices U and V of the singular value decomposition of LTPdL turn

out to be Fourier transforms.

The response Lu to an impulse w(p,7) = 8(p —p)8(7—P) is

o

d(h,t) = fdp 6(p ~p)6(t —ph —7)

—oo

6(t —Ph —7) (3.8)

Applying LTP; to this gives the impulse response of LTPdL:

ko
u(p,7) = fdh 8(7+ph —ph —7)
hy
ha
O(h —h
- fdh ____( NO) (3.9)
4 lp—P|
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where hg = —(7-7)/ (p —p). Thus

for hy < hg< hg

¥
ulp,7) =
Y otherwise
= |p—P | 'H(ho—h,) H(hy—hy) (3.10)

where H(z) is the Heaviside, or unit step function. With this result the transforma-

tion LTPdL may be represented in the form of a double integral with kernel K:

u(p,7) = fdp de K(p,7; §,7) € (p,7) (3.11)

in which the kernel is

Kpnp®H = |p-p| ' H-T""h, Hh2+T-‘£—] (3.12)
p—P p—p

Note that the kernel K of the filter is convolutional in both 7 and p, and therefore
the filter is multiplicative in two-dimensional Fourier transform (2DFT) space. In
other words, the operator LTPdL is diagonalized by a 2DFT. In the present context
it is important that the forward and inverse Fourier transform pair be adjoints of
each other: the singular value decomposition of LTPdL into UZVT requires that U

and VT be an adjoint pair. The Fourier transform convention used here is

u(¢,n) = 217T dp fd'r w(p,r) e HP T (3.13a)
ul(p,r) = 21ﬂ dffdnu(én)e““””" (3.13b)

We shall identify the forward 2DFT with the operator U7, and the inverse 2DFT with

the operator U.

To find the filter of equation (3.12) in the Fourier domain, Fourier transform the

kernel K(p,7):
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e 1 - T T g
K(f”fi) = '27[[‘1? dt IPI IH[—;—hl HPPE*-}T g P -inT
= ~k1p 0 ~hgp
21 fdp f dr + fdp f dr { Ipl”le““p_”'"' ] (3.14)
m 0 —th —00 _h'lp

Partitioning the integral in this way keeps the differential area under the double
integral positive. Now let 7 = hp, d7 = p dh. By this change of variables the

integral becomes

%0 —hl
K¢m) = 51"— dp f dh |p| |p | le-itp-inph
—o%0 —ha
—hy ~h,
= f dh 8(£ + nh) = f dh 6(¢/n+h) (3.15)
n <, Inl
2 2
Therefore
Ktm) = |7;|‘1H[-f7——h1 Hlh, — -f]—] (3.16)

where H(x) again is the unit step function, and is used to define the region where
the filter is nonzero: that is, where the delta function of equation (3.15) lies within
the finite bounds of the integral. The nonzero region of the filter ]?(E,n) in the
Fourier plane is shown in figure 3.1. As h; » —= and hy —» =, the filter covers the

entire Fourier plane.

An extra factor of 27 arises as a consequence of our choice for the symmetric
Fourier transform pair (3.13). The transform of 6(z) is now 1/ (2m), and the convo-

lution rule, which normally has no scaling factors present, is modified to become

FT 3
f(x) wglx) «—> V27 F(¢) G(n) (3.17)
Another explanation for the extra factor lies in the fact that, in order to properly
transform an operator into another domain, a similarity transformation K = UTKU is

required. A Fourier transform must therefore be performed over both the input and
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FIG. 3.1. Slant stack impulse response LTPdL in the (A,t) domain (equation 3.12)
and the filter response in the Fourier domain (equation 3.16). The filter in Fourier
space is nonzero within the range of dips that are reciprocal to the dip limits in the
time-space domain.

output variables of the operator's kernel. When the kernel happens to be convolu-

tional (as K is in our case) this transformation simplifies to:

1 [f zf(Z e i
dzr dZ - iz — iz
2 . zdZ f(Z —x)e
R .
Ix' ; -1z fdx _"-(E - &)=
f Jiz)e 2m J ¢

V27 F(§) 6(§-¢) (3.18)

K@E 0

where F'(£) is the one-dimensional Fourier transform of f(xz). The formal kernel of

LTPdL in the Fourier domain is found by applying rule (3.18) to equation (3.16):

RGe5m = 25 g ni—hl

H
Inl

ha — é‘]d(? - 867 —-n) (3.19)

In short, when such a kernel is transformed, an extra factor of 27 must be included

with the forward 2DFT; likewise 1/ 21 must be included with the inverse 2DFT.
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The pseudoinverse is implemented by taking the inverse of the nonzero portion
of the filter in the Fourier domain. In this case the null space of the operator LTPdL
is obvious: it comprises events whose dip spectrum lies outside the nonzero range

of the filter in figure 1. The pseudoinverse of }? is thus

hy — % (3.20)
n

As the aperture (h,, hy) widens, the filter converges to |7n|/ 2n, which is the so-

"4l = |7l
K'(¢m) Yy H17

called rho filter.

The term 'rho filter" is borrowed from algebraic reconstruction theory (Swindell
and Barrett, 1977). The only difference between algebraic reconstruction and our
case, slant stacking, lies in the choice of coordinate system; the equations for
algebraic reconstruction are derived in a polar coordinate frame instead of a slant
frame. It is not surprising that the rho filter, which is applied before the back pro-
jection (or stacking) step, has the same analytic form |p| as equation (3.20), in

which p is a spatial wavenumber (Macovski, 1983, p. 127).

A time-space domain implementation of this filter is preferable, for in practice
the spatial axis is discrete and limited. An implementation of the filter in the spatial
wavenumber domain will result in serious wraparound problems. It is better to find an

expression for K*in the (p,7) domain:

1 [
dn d¢ LLp
4Trz[,_f,,n “en

Again let h = £/ be the new variable of integration so that ¢ =nh and

K*(p,T)

H

=

hy — ‘i] e®EriT  (3.21)
Y]

dé = |n|dh. The limits of the integral are divided in such a manner to guarantee a

positive area differential:

_49-



ke
K'(p,7) = 13fd'r)fdhn2 e (T + hp)
8
—o hy
- 13‘/‘(177 —in ei,r'.r[einphz_einphl]
8n° J D
1 f—'i,zz in{r + phy) 1 f—in in(r + phy)
= e dn - e d (3.22)
8n®J_p T & J P K
or,

K*(p,7) =

41:2]0 8'(r + phy) — 8'(7 + ph)) ] (3.23)
This filter, the kernel of the pseudoinverse, consists of a delta derivative positioned
along the slopes —h, and —h, with a weight of 1/ |p | applied. One way it could
be implemented is by a finite differencing where the delta derivative is positioned.
In a way, the inverse filter uses only the truncation effects associated with the
forward filter K to do its work. Because the delta derivatives are positioned along
the edges of the filter, the inverse kernel X* in equation (3.23) will detect varia-

tions of the input along the slopes —h; and —h,. A frequency-bandlimited version

of the impulse response of equation (3.23) is shown in figure 3.2.

When an infinite aperture is assumed, h; » —w and hy; » =, and the filter
K*(p,'r) reduces to the familiar one-dimensional rho filter. This reduction is made by
performing an inverse Fourier transform on the expression (3.20), with the unit step

functions removed from the integrand:

KHp,m = LRI (3.24)
41

where p(7) is the inverse transform of |7 |. In a strict sense, the inverse transform
of |n| is unbounded, but discrete approximations to it are bounded and are easily

derived. Let us now give two possible discrete implementations of the rho filter.

One obvious way to design a discrete rho filter is to perform a discrete inverse

Fourier transform on |7|:
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Finite Aperture Slant Stack Impulse Responses
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FIG. 3.2. Responses of LTP4L and (LTP4L)* to a sinc function (i.e., a bandlimited
impulse in time). The ideal impulse responses in the (p,7) domain are given by equa-
tions (3.12) and (3.23).

n/ At

p(7) = d/‘ dn |n|et (3.25)
—n/ AT

The limits of integration are bounded by the temporal Nyquist frequency n/ Ar. Per-

forming this transform vields

-4 jreven
AR5 R T
p(1) = o jrodd (3.26)
2
i?z jrzero (T = j A1)

The alternative way to design the discrete rho filter is to calculate the continuous
transform at those T values where it exists. In this case, the integral is bounded

everywhere except at 7 = 0.
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p(7) = fdn [n|et™™ = ;72 T=jAt #0 (3.27)

Because the filter |7 | can have no zero-frequency component, the remaining
unknown filter element at 7 = O must be chosen to be the negative average of the

other filter components:
po = D AT o (3.28)

= FeAT

In summary, identifying the null space of LTPdL allows one to determine which
events are unrecoverable from the slant stack inversion. Specifically, those
events, whose slopes are not within the range of slopes that were stacked over,
are eliminated in the forward stack and cannot be recovered by the pseudoinverse.
Except for these events, the original data set may be reconstructed by the follow-

ing process:
(a) Given d, apply the transpose slant stack L7P,d.
(b) Apply the pseudoinverse (LTP4L)*.

Table 3.1 summarizes the forward and inverse filters developed in this section. For
completeness, the operator LPuLT and its pseudoinverse are also included in the
table. In this case the projector P, limits the events' slopes p to lie between p,

and p,.

3.4 Equivalence of the finite offset pseudoinverse and the rho filter

Let us return to the theorem at the end of section 2.7. It states that under
certain conditions the pseudoinverse (L"P,L)*LTP, is equivalent to (LTL)*L7P,. If
these conditions hold, the projection P; may be eliminated from the pseudoinverse.
The projection P, in section 2.7 can also be safely ignored, because of the

assumption of equation (3.3). In any case the following results may be generalized
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Slant Stack Filters

Dip
Filter Range Space Domain Fourier Domain!
L7P4L | Ry, R
d 22 o - hy AR + T 21 gl h ARy -
P P Inl "|n 7
- 2n
| I7l
T + 1 , ,
(LTPLY hiche | T—[6(r + phe) = 6r+ phy) 1l & _p Mg,
mp 2 7 7
%0 B Lnl
—2—1-1_—2?2—5(})) (note 2) 2m
LP,LT | p,, pe )t t 2n k k
|7 H|= == p:1|Hpa + & 'w_I'H_B—_le et -
- 27
oo h|1
IRl (o]
WPL prpe | [t —n 't — lw| | & k
? pg) — 6(t — hp,) - +
4n°h o H L P1 Hpa 5
o0 B Lol
2thd(h) (note 2) 2m
v
Notes:
1. Fourier variables: T>n t»w
p~é h -k

2. The filter point at zero £ or 7 is taken to cancel the mean of the filter.

TABLE 3.1. Slant stack filters. H(f) is the unit step function. For each filter, the
impulse response in the time-space domain and its transform in the Fourier domain is
given. An infinite dip range means hk,,p; »—« and hg,, p,—~>+o. Superscript '+
refers to the pseudoinverse.

to include the effect of P, by substituting LP,, for L and P,L” for L7. Recall that
the theorem of section 2.7 holds when LTPdL and LTL share eigenspaces; in other
words when the same unitary transformation diagonalizes L"P;L and L7L. For the
present case the transformation that does this is a familiar one: the 2D Fourier

transform from (p,7) to (§n). The filter LTP4L in table 3.1 is a finite aperture
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filter, the term "aperture” referring to the limitation in offset h, < h < h,. This
aperture actually defines P; in equation (3.5). As the aperture widens to infinity,
P, approaches the identity operator and L7P;L approaches L7L. Therefore L7L and
LTP,,L may both be applied in the Fourier domain, and because they share common

eigenvectors (the Fourier kernel), they satisfy the requirements of the theorem.

It is enlightening to examine more closely the reason why LTL and LTP,4L have
the same eigenvectors. The notation of section 2.7 shows that L may be
represented by its singular value decomposition VEUT. UT has already been identi-
fied with the forward two-dimensional Fourier transform from (p,T) space to, say,
(&,m) space. But what is VE? Since V is a member of the SVD, it must have ortho-
normal columns: VTV = I; also, ¥ must simply be a multiplier with positive values. An
equivalent formula for the singular value decomposition is given by LU = V). Let us
now determine LU by Fourier transforming operator L (given by equation 3.6) over
the input space:

o

fdp u(p, t — ph)

—o0

ﬂ'dp d7 6(t —ph — 1) _;_ﬁ_ffdédn ﬁ(g,n)e“p + 1T
N | )
i int ip (¢ — nh)
[[dédn agme 2T fdpe

fdn %A (nh, n) et (3.29)

d(h,t)

It

The operator in equation (3.29) may be identified with VX. The form of X is already
known: it is simply the kernel LTPdL expressed in the Fourier domain (equation
3.19). In operator notation, UT(LTP,L)U = £7%, and by comparing this to equation
(3.19), we must conclude that ¥ (ignoring the unit step functions H()) is the multi-

plier
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1/2

200 s -6 - D (3.30)

S &) =

Given this expression for ¥ and the expression for VX in equation (3.29), the kernel
for V must be

1/2

V(h)t; f,?’}) = 6(6 - nh) eilqt (3.31)

s/
21

V consists of a stretch of the wavenumber axis ¢ = nh followed by a Fourier
transform from 7 to £. It may be easily verified that V is normalized and thus satis-

fies the orthogonality requirement for the singular value decomposition: VIV = 1.

The condition that LTL and LTP,L share eigenvectors U, was shown in section
2.7 to be equivalent to the requirement that P;V = VP for some projection P.
According to this requirement P; (given by equation 3.5) must be able to pass
through V (given by equation 3.31) and, though transformed, still retain the qualities
of a projection operator. Because P, is independent of time £, it commutes with the

Fourier transform component of V:

1/2
kernel of PyV: Py(h) ETNL 6(¢ — nh)eint
1/2
= —Znﬂ— 8(¢ —nh) et P/ n) (3.32)

P thus equals the projection F;(£/n), which is comprised of the two Heaviside unit

Ry — ﬁi (3.33)
n

The fact that equation (3.33) describes a projection proves the validity of the rela-

step terms:

P, n) = H[f}——h,1 H

tion

P,V = VP (3.34)
in which P and P, are both projections. As a consequence, the eigenvectors of L7L

and LTPdL are equivalent, and the theorem of section 2.7 may be applied for the
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case of slant stacking. Relation (3.34) will also be used in chapter 4 to justify the

application of the theorem of section 2.7 to velocity stacks.

3.5 lllustrations of pseudoinverse filtering

Because |7| is the expression the rho filter (L7P4L)* assumes in the Fourier
transform domain when P; =, it can be referred to as the full aperture rho filter.
The finite aperture filter (LTPdL)+ given in table 3.1 is more costly to implement,
because its kernel is two-dimensional; the full-aperture rho filter can be imple-
mented as a one-dimensional filter. Note that regardless of the size of the offset
aperture (h,, hy), the pseudoinverse u of d is given as

u = (LTLL7P,d (3.35)

Equation (3.35) describes a valid means to compute the pseudoinverse u for
any definition of the projection P;, as long as that projection satisfies the following
conditions: P;(h,t) is independent of £; and P;(h) equals zero or one; i.e., P; must
of course remain a projection. Under these conditions LTPdL remains a time and
space invariant filter, and is "diagonalized" by a Fourier transform. Therefore, the
full aperture rho filter applied to LTPdd still yields the pseudoinverse, particularly
when the data set d is discretely or otherwise arbitrarily sampled in offset. Accord-
ing to our theory d is still constrained to be continuously sampled in time, but in

practice it is adequate to have d finely sampled.

Figure 3.3 demonstrates the equivalence of the rho filter with its finite aper-
ture version. Panel (a) is the response L7P L to a bandlimited impulse
6(p — p,) sinc(T — 7,). It is thus the slant stack of a single dipping event with a
sinc(7) waveform. P; is defined by the finite offset range of the slant stack,
0 < h < hpa, Paneis (b) and (c) are the results of applying (L"P;L)* and (L7L)*,
respectively, to the slant stacked bandlimited impulse shown in panel (a). There is

no perceivable difference between panels (b) and (c). Panels (e) and (f) are a
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(a) Response L'L (b) F.A.R.Fo (c) 1.A.R.F.

to a Sinc applied to (a) applied to (a)
10 20 30 10 20 30 10 20 30

(o8s) Bwit

—

FIG. 3.3. The resolving kernels of the pseudoinverse.

(a) The data set d, which is not shown, consists of a zero phase, bandlimited
wavelet with linear moveout. Consequently the data set is a slant stack of a single
event centered in the (p ,7) plane shown. Only positive offsets are present in the
data domain. Applying the transpose slant stack to d gives the response in panel
(a), which is another illustration of the impulse response of LTPdL.

(b) Finite aperture rho filter (LTP‘,,L)+ applied to panel (a). See table 3.1 for its
definition.

(c¢) Infinite aperture rho filter (LTL)* applied to panel (a). This is the "standard" rho
filter |n| given in table 3.1.

similar comparison in which the impulse response in panel (d) has been corrupted
with independent additive Gaussian noise. Again, there is no difference in applying
the full aperture filter or the finite aperture filter. The results of the two operations

are the same.

A measure of how well the pseudoinverse performs as an ideal slant stack
inversion is given by the degree of focusing of the impulse response in figure 3.3.
In panels (b) and (c) the spread of the impulse response (the sidelobes) has been

significantly reduced with respect to the response in panel (a).

_57_



LT(L + noise) to a Sinc
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FIG. 38.3. (continued)

(d) Same as panel (a), except some zero mean independent noise was added to d
before slant stacking.

(e) Finite aperture rho filter (LTPdL) t applied to panel (d).
(f) Infinite aperture rho filter (LTL)* applied to panel (d).

3.6 Summary

The expressions for the slant stack pseudoinverses, which are summarized in
table 3.1, have been relatively easy to derive because of the known form that the
singular value decomposition takes: a simple fan-filtering operation in the Fourier
domain. The examples in the last section also illustrate the equivalence, in prac-
tice, of the finite-aperture and infinite-aperture rho filters, the equivalence being
theoretically proved with the use of the theorem of section 2.7. The difference in
cost between the two filters, finite- and infinite-aperture, can be significant, which

points to the desirability of using the infinite-aperture rho filter.
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