Chapterl

Invertibility of Velocity Stacks

1.1 Preface

Performing normal moveout and stacking is a standard way of transforming data
into what can be called velocity space. Under what conditions is this operation
invertible? In other words, to what extent can an inverse operator be found, that
will transform data from velocity space back into the original space of the common
midpoint gather? This question will be addressed in detail in the following chapters,
and there it will be seen to be closely related to the problems of velocity analysis,
velocity filtering, and, probably most importantly, to the undersampling of seismic
field data. The results of later chapters will be briefly described below with the
help of a real-data example. By illustrating the central points to be made with field
data, this chapter serves as both an outline and a summary to the remaining

chapters of the thesis.

Terms like common midpoint gather, stack, and normal moveout (NMO) are
common terms in the literature of reflection seismology. Definitions for most of
these terms, except those that are explicitly defined in mathematical expressions,
will not always be given. For a comprehensive glossary of reflection seismology ter-

minology, see Sheriff (1973).

1.2 Velocity stacks

Velocity stacks are commonly used to estimate velocities during the course of

processing reflection seismic data. A velocity stack is a collection of traces, each
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trace being the result of applying normal moveout (NMO), consistent with a constant
velocity for that trace, to the traces of a common midpoint gather and summing.
Figure 1.1 is an example of a velocity stack of real data (as opposed to synthetic
data). The stack was performed by discrete summation, but for our purposes a

velocity stack will be defined as an integral over the finite range of offsets h; to

hz:
hy
u(v,7) = f d( h, t=V71% + R%/v?%) dh (1.1)
hy

where d(h,t) denotes the input to the velocity stack and u(p,7) denotes the out-
put. The velocity~time pair (v,7) are the coordinate axes of the velocity stack, and
the offset-time pair (h,t) are the coordinate axes of the common midpoint (CMP)
gather, also referred to as a common depth point (CDP) gather. Offsetis a spatial
axis, with units of length. When (v,7) and (h,t) are considered to be linear vector
spaces (they can easily be defined so), equation (1.1) defines a linear transforma-
tion L7 from the (h,t) domain into the (v,7) domain. The (h,t) domain will subse-
quently be referred to as the offset space or data space, and the (v,7) domain as
the velocily space. A typical seismic survey is comprised of 48 or 96 offset
traces, and approximately half that number of discrete velocities might be used to
make a velocity stack. Because a typical trace consists of 1500 sampled time
points, the dimensions of the discretized offset and velocity spaces can reach
beyond 10°. The fact that the operator (1.1) can be applied at all in practice, is

because it is a very large, very sparse linear system.

For our purposes it is more appropriate to parameterize velocity stacks by
slowness p, the inverse of velocity, instead of the velocity v. To standardize
nomenclature, the transformed panel w(p,7) from now on will be called a velocity
stack, and in this chapter the illustrations show velocity scales at the top, though

the traces in the illustrations are actually evenly sampled in slowness p. A velocity
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stack is now defined to be

ha
u(p,r) = f d(h, t=VT? + p*h?) dh (1.2)
hy

1.3 Velocity space

We illustrate operation (1.2) with figure 1.1, a velocity stack of a CMP gather
from the offshore Texas Gulf Coast. Panel D, the common midpoint gather, displays
the attributes of a typical gather. Pre-critical reflections from sedimentary layers
demonstrate hyperbolic moveout: the arrival times fit a hyperbola parameterized
by, first, the average velocity of waves through the sediments and, second, the

zero-offset travel time.

A velocity stack can be used to determine velocities, because, with the
correct velocity, the values of a reflector will add constructively when the sum is
taken over the correct hyperbolic path. Pane!l LTD in figure 1.1 demonstrates the
typical appearance of a velocity stack. The deeper the refiector is on the section,
the more diffuse its response is; this degradation in velocity from shallow to deep
on the section is a consequence of the finite recording aperture laid out on the
earth’s surface: thus velocity resolution degrades with depth. The velocity curve
implied by figure 1.1(LTD) does not necessarily have to remain a single-valued
function of time, and the only characteristic that allows us to distinguish between
two reflectors with the same zero-offset travel time is their relative moveout. For
use in velocity analysis, the transformation into velocity space should have the
desirable property of focusing hyperbolic events into points; this property obviously
would aid in the resolution of two events with different velocities. Velocity stacks
are able to resolve different events well in velocity space, but they do have the

undesired side effect of adding horizontal tails (sidelobes) to each event in velocity
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FIG. 1.1. Velocity stacking. Panel D is a portion of a common midpoint gather from
the Offshore Texas Gulf area (courtesy of Western Geophysical Co.). Refractions
have been removed with a triangular mute. For clarity, only positive polarities have
been plotted. Panel LTD is a velocity stack of D. It was made using equation (1.2)
with the integration over offset replaced by a uniformly weighted summation.
Though the stacking velocity curve may be picked off the panel, it lacks the resolu-
tion in velocity that a semblance velocity analysis would give.

space. In comparison, a standard semblance velocity analysis (figure 1.5) seems to
be able to suppress the energy in the tails. The main reason for the strength of the
tails on the velocity stack is that the moveout curve for any event, regardless of
its velocity, has a slope that converges to zero at zero offset. When summing over
a hyperbolic moveout path, we cannot avoid contributions from events at other

velocities as zero offset is approached, as long as we continue to weight each



trace of the common midpoint gather equally in the summation.

1.4 Designing a velocity transform

It is desirable to have an alternate choice for the velocity stacking operator
LT that does not suffer the shortcomings of LT mentioned above. One obvious
approach is to selectively weight the traces of the common midpoint gather before
summing: one choice is to set the weighting to be proportional to offset k. In this
way, the far-offset traces are allowed to contribute more to the stack than the
near-offset traces, where there is no moveout discrimination between events with
different velocities. If we denote this offset-weighting in operator notation by S,

an alternate definition for a velocity stack is the product of the two operators LT

and S:
hg
LTs: u(p,r) = f h d( h, t=V72 + p?R?) dh (1.8)
hy

‘Figure 1.2 compares the two velocity stacks, L7 and LTS, applied to a window of
the data of figure 1.1. The main advantage that L”S has over L7 is that it reduces
the horizontal "smear’ of the events on the stack. The remaining streaks, or
sidelobes, on the panel are artifacts resulting from the truncation of events at the
far offset of the common-midpoint gather. One of our main goals will be to alleviate
this offset truncation problem on the velocity stack. The velocity stack of equation
(1.3) may be generalized to allow an arbitrary weighting function of offset f(h)
inside the integral, whose purpose is to reduce the truncation effects at far offsets

(Larner, 1979).

There is however a better approach to designing a replacement for the veloc-
ity stacking operator LT, via least squares. Assume that a common-midpoint gather
d(h,t) is the result of some transformation on a function u(p,7) in velocity space.

Perhaps d(h,t) is also corrupted with additive noise:



d = Lu +n (1.4)
A straightforward definition for the operator L is the adjoint of the operator L7
defined by equation (1.2). Through the suitable definition of an inner product

space, L turns out to be simply the process of reverse NMO and stacking:

Dp
d(h,t) = f u(p,'rz\/tz—pzhg)dp (1.86)
Py

The adjoint relationship between operators L7 and L will be derived in chapter 2. L
is identical in operation to LY except that normal moveout "stretch" is replaced by

an inverse-moveout compression of each trace.

Equation (1.5) makes sense as a modeler of events on a common-midpoint
gather: an impulse in velocity space gives rise to a hyperbolic event with a uniform
amplitude across all offsets on the gather (data space). To what extent are the
operations L and LT inverses? Applying the least squares method to (1.4), in order

to minimize the energy in the noise term of (1.4), yields

u = (LTL)"L7d (1.6)
To zeroth order, the diagonally dominant L7L approximates the identity operator; the
amplitudes of the diagonal elements of L7L may be orders of magnitude greater than
those of the off-diagonal elements. But this zero-order assumption is inadequate,
as illustrated by the wide spread in velocity exhibited by the events in figure
1.1(LTD). Even more basic is the question of whether (L7L)™! exists, and how
easily it may be found. Both the finite sampling interval and finite range in offset
contribute to the ill-conditioning of L”7L and increase the likelihood of it being singu-
lar. Probably the greatest contribution to ill-conditioning is the nonuniqueness of

the hyperbolic summation paths near zero offset.

It was seen above that the offset-weighted velocity stack LTS had properties

that favored it over the uniformly weighted velocity stack L7. we may say that LTS
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FIG. 1.2. Comparison of the pseudoinverse and stochastic inverse to the velocity
stack. The upper left panel is a portion of the velocity stack of figure 1.1 from 2 to
3 seconds. In text notation, it is LTd. The upper right panel is the offset-weighted
velocity stack over the same data, L7sd. The lower left panel is an estimate of the
pseudoinverse (LTL)*L7d of the data. The "rho filter’ (a term borrowed from alge-
braic reconstruction theory) refers to the filter (L7L)*. The lower right panel is an
approximate solution to the stochastic inverse equations (1.7). The resolution of
velocities in velocity space gets progressively better from upper left to lower right.



is an example of a transformation that is somehow closer to the inverse of L than
L7 is. But the approach which we shall take will deal with the estimation of (LTL)™!.
The main reason for preferring LY over L7S as the definition of the velocity stack
lies in the important assumption (1.4): that the gather is the result of L (the
"reverse" velocity stack of equation 1.5) applied to some function u in velocity
space. Once the form of L is fixed by equation (1.5), the definition of its adjoint L7
is likewise fixed, and from now on will be the preferred definition for the standard

velocity stack.

We have two basic routes open to us to design a substitute for the ill-
conditioned (or nonexistent) inverse (LTL)™!. The first approach is to use the
pseudoinverse, or generalized inverse (LTL)* (Lanczos, 1961), which by definition
inverts the nonzero singular values of LTL (chapter 2). In this approach, the opera-
tor LTL may have a large null space, which is related to the offset limitations on the
original gather (chapter 4); by use of the pseudoinverse the null space components
are effectively constrained to be zero in the inversion. The pseudoinverse
corresponding to L is (L)L, Figure 1.2 illustrates the steps taken in applying the
pseudoinverse filter to a window of the data from figure 1.1. First apply the veloc-
ity stack LT of equation (1.2) to the data. Next, apply the filter (LTL)* to give the
“rho filtered” stack (the lower left panel of figure 1.2). This filter, which is derived
in chapter 4, is relatively localized in time and space. It also happens to be nonsta-
tionary. Recall that our objective is to design an operator that is able to transform
a common-midpoint gather, like that of figure 1.1(D), into a sharply focused velocity
panel. The rho filter panel of figure 1.2 shows that the pseudoinverse (L7L)* does
this fairly well. False events at high velocities have been eliminated, but there is
still some problem with the discrimination between real events and artifacts at low

velogities.

The second approach to designing an approximate inverse to L, is by solving
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FIG. 1.3. Comparison between the stochastic inverse u and the velocity stack
L78Sd over a time window of 1 to 4 seconds.

equation (1.6) directly, after perturbing L7L toward an operator that is guaranteed
to have a stable inverse. A priori knowledge of the variance of the solution may be
incorporated by adding the term u”Du to the least squares functional to be minim-
ized (chapter 5). The term D is defined as the ratio of noise variance to variance of
the model in velocity space. Adding this diagonal term to the least squares linear
system LTL converts it into what Aki and Richards (1980) call the stochastic

inverse

u = (L7L + D)"1L7d (1.7)

When the variance of the solution is not precisely known, the D term may be
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"bootstrapped” or iteratively refined from estimates of u. A mathematical justifica-
tion for this bootstrapping is derived in chapter 5 by relating the variance estimate
to a nonlinear parsimony (sparseness) measure. In this case, when D depends
explicitly on u, equation (1.7) is converted into a nonlinear system of equations.
The lower right panel of figure 1.2 shows the results obtained when the stochastic
inverse in (1.7) is applied to the Gulf Coast CMP gather. Because the system of
equations (LTL + D) is nonlinear and possesses a vast dimensionality, it is impossi-
ble to attain exact convergence with an iterative algorithm, much less solve equa-
tions (1.7) directly. Yet in practice, substantial convergence can be made within a
few iterations. For example, only five iterations were necessary to attain the solu-
tion u in figure 1.2. In the lower right panel of figure 1.2 the resolution of individual
velocity events is significantly enhanced over that of the two alternatives, stan-
dard velocity stacking and pseudoinversion. Another comparison of the stochastic
result u to the velocity stack L7sd, over a greater range in time, is shown in figure

1.8.

It should be noted that the definition of stochastic inverse used here is a gen-
eralization of the definition given in Aki and Richards {1980, sec. 12.3.5). 'There,

the diagonal term D is constrained to be constant.

The least squares equations (1.7) can now be identified as a velocity
transformation from data space to velocity space. Once a parsimonious solution u
has been found, the process of "inversion" consists simply of an application of the
operator L (figure 1.4) to u. Coherent events remaining on the residual d — Lu of
figure 1.4 are for the most part nonhyperbolic. The low-frequency coherent events

with linear moveout happen to be normal modes confined to the shallow water layer.

Figure 1.5 compares the envelope of the stochastic inverse u with a standard
semblance velocity analysis from the same gather, and the envelope of the velocity

stack L7sd. The velocity resolution is virtually the same on the first two plots,
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though the semblance plot was created by scanning twice the number of velocities.
The envelope of the standard velocity stack also shows good resolution of the
strong events, but suffers from having a higher level of background noise, due, as
always, to truncation artifacts. The main objective of the stochastic inversion pro-
cedure may be summarized as an attempt to drive down the level of the artifacts on
a standard velocity stack, in order that weak events, which may have been
obscured by the artifacts, can be seen. Notice a high-velocity event at 2.4
seconds on figure 1.5 which is distinct from the general trend of the velocity func-
tion. It is a reflection from a steeply dipping fault (Hale, 1983); that its apparent

velocity is higher than that of the surrounding events, is due to dip effects.

As a final motivation for developing approximate inverses to the velocity
stacking operator L, consider figure 1.6. The various approximations to the inverse
of L described in the text may be used to reconstruct the original CMP gather of
figure 1.1. The left-hand panel is a reconstruction of the common midpoint gather
employing LT as an estimate to the inverse of L. In the center panel the general-
ized inverse (LTL)* (Lanczos, 1961) was used to estimate the inverse. Finally, the
stochastic inverse (LTL + D)7!LT was used in the right panel to reconstruct the
data. There is an obvious disparity between the data set itself (figure 1.1) and the
reconstructions of it using the approximate forward- and inverse-transform pairs.

The stochastic inverse in this case best restores the original data.

1.5 Limitations

It must be emphasized that L functions as a common-midpoint gather modeler,
albeit a crude one. The inverse transformation of a common-midpoint gather into
velocity space is meaningful only when the implicit assumptions that justify employ-
ing L as a modeler are true. What are these assumptions? A reflector on a

common-midpoint gather must have uniform amplitude from trace to trace; it must
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FIG. 1.4. Reconstructing the original data. Panel LU, an estimate of the original data
(Panel D), is made by applying the velocity stacking operator L (equation 1.5) to
the stochastic inverse u of figure 1.3. Panel LUD is the difference d — Lu between
the original and the estimated common-midpoint gathers.
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FIG. 1.56. Velocity analyses. The right panel was made by taking a time averaged,
normalized envelope of the stochastic inverse u of figure 1.3. For comparison the
middle panel is a standard semblance velocity analysis on the common midpoint
gather. Each point of the panel is a measure of the similarity of waveforms over the
corresponding moveout path in data space. Perfect semblance equals 1. The left
panel Is an envelope of the velocity stack L7Sd of figure 1.3. The fine contour
interval on the plots is 0.1. The resolution of velocities in each panel is good. 40
velocities were scanned to make the semblance plot, 20 velocities to make u and
L7Sd. The events in the velocity panel envelope closely track the events of the
semblance velocity analysis; for this example the horizontal sampling used in veloc-
ity space (20 traces) is adequate.

smoothly vary in moveout from trace to trace; traces must be balanced in amplitude,
and no amplitude residuais may be present. Actual data sets satisfy none of these
assumptions precisely, but the better the assumptions hold with the seismic data at

hand, the better the resultant velocity panel can resolve true earth velocities.

On the brighter side, the results that will be developed in the following
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FIG. 1.6. A comparison of various data reconstructions. The left panel is a recon-
struction using L7 in place of the true inverse: in the notation of the text it is LL7d.
The middle panel is a reconstruction from the rho-filtered velocity stack, or
LILTL)*LTd. The right panel is a reconstruction from the stochastic inverse u, or
L(LTL + D)"'IL7d. By comparing these panels with the data of figure 1.1 we see
that the generalized inverse and stochastic inverse better approximate the original
data, and so are 'closer"” in a sense to the inverse of L than L7 is.

chapters may be easily adapted to a better, physically more realistic choice for the
modeling operator L. This applies as long as the chosen operator is linear and has
an input space not restricted to a single velocity function. For example, a wave

equation modeler would eliminate the waveform distortion that accompanies NMO

operations.

1.6 Overview of the remaining chapters

The velocity-stacking operator defined in this chapter has a close relationship
to slant stacking. They are both back-projection techniques; only in the shapes of

the summation paths taken over the data do they differ. Slant stacking involves
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summing over paths with linear moveout; that is, the operator can be defined to be

hg

u(p,7) = f d(h,t =1+ ph)dh [slant stack]
by

Recall that the definition of a velocity stack in (1.2) is

he
u(p,r) = f d(h, t=VT® + p?h?) dh [velocity stack]
hy

Redefining L as a slant stack raises the new issue of slant stack invertibility. Two
effects, aliasing and truncation, definitely preclude the existence of an exact slant

stack inverse pair, as will be seen in chapter 3.

Chapter 2 presents greater detail on the issue of invertibility of the operatorL,
in particular for the above two choices of L: velocity stacking and slant stacking.
Estimates of the generalized inverse for each transformation are derived in
chapters 3 and 4 and are applied to real data examples. The term "real” will be
used from now on to distinguish measured field data from synthetically generated
data. Chapters 5 and 6 describe the stochastic inverse to the velocity stack and
to the slant stack (respectively) as choices for L. A number of real-data examples
there illustrate the performance of the stochastic inverse in resolving events in

velocity space.

1.7 Motivation

This thesis is an outgrowth of a proposal of Jon Claerbout's to study the prob-
lem of missing data restoration. Seismic data sets are often irregularly or incom-
pletely sampled spatially, and the outcome of subsequent processing of a data set
will most likely be influenced by the incomplete sampling. But interpolation of the
missing parts of the data always involves some a priori assumptions about the data:

what the interpolated traces should look like.
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The focus of this study eventually shifted from missing data restoration, to the
effect missing parts of the data have on the important step of stacking, and finally
to the design of a stacking operator that is relatively insensitive to missing data.
As described above, it is basically a least squares approach to fitting of the
recorded data. Interpolation of the data is then a byproduct of the least squares
inversion step, because a simple operation takes the inversion estimate back into
the data domain, yielding an arbitrarily finely sampled estimate of the data. Figure

5.16 in chapter 5 is an example of such an interpolation.

The main a priori assumption made is that of parsimony in the model domain. The
incorporation of parsimony into the least squares formulation was motivated by the
successfui work of Gray (1979) and Godfrey (1978) on parsimonious (or minimum
entropy) deconvolution, which in turn was inspired by the work of Jon Claerbout and
Francis Muir at the Stanford Exploration Project. Chapters 5 and 6 are an attempt
to extend the use of parsimony to a two-dimensional problem, that of imaging veloc-
ity space, in comparison to the one-dimensional deconvolution problems of Godfrey

and Gray.

_16_



