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Robust inversion of non-linear transformations with an
application to VSP's

William S. Horlan and Patrick Lailly

Introduction: choosing and simplifying the statistical tools

An inversion of seismic data for physical parameters must suppose a statistical model,
whether acknowledged or not, that limits the possible expressions of signal and noise. This
model contains a priori information -~ information not requiring the inverted result for its
estimation. An unbiased model must reflect the possibilities to be found regionally in the
data; a robust model must, in addition, derive directly from the data. A priori statistics

introduce otherwise ignored information -- the frequency of events.

Signal and noise efficiently described, by the smallest number of random variables
(parameters to be estimated), allow the simplest statistical tools. Joint probability functions
(j.p.f.'s) allow the most arbitrary dependence between variables: the data never possess
enough redundancy for their estimation. Marginal probability functions (m.p.f.'s) describe
each variable independently. If a transformation has rendered all variables statistically

independent (we shall say "focused"), then j.p.f.'s may be calculated from m.p.f.'s.

The data easily provide sufficient redundancy to estimate m.d.f.'s. Again, a priori
statistics should reflect regional possibilities. Knowledge of one reliable event should
increase the likelihood of finding such another event nearby. Thus, one not only expects but
desires that estimated m.p.f.'s change slowly over spatial dimensions and time. Because of
this stationarity, a histogram prepared from a great many samples with identical m.p.f.'s will

describe the possibilities open to them all.

Because each component of the data, signal or noise, has a different focusing transfor-
mation, the corresponding m.p.f.'s measure distinctly different information. We shall see
that, with such measurements, one may estimate and extract the most reliable events from a

focused component. The interference of other components may be iteratively subtracted.
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Inversion with known statistics

We delay until the following section the difficulty of estimating m.d.f.'s from signal and
noise and assume, for the moment, that these are known. Let the data be a random process

defined as a sum of noise and non-linearly transformed signal.
d; = f;(8) + ng (1
or d=f(8)+n
We define § and 7 as focused, stationary random processes (random vectors).

We define geophysical noise as that untransformed component showing no spatial
coherence (we allow some temporal coherence). If a component possesses significant
coherence, then it should be properly defined after another transformation, as a second

variety of signal.

Let ps(z) and p,(z) be the corresponding m.p.f.'s. We define the MAP inverse as that
§ most probable for a given d. (MAP abbreviates mazimum o posteriori, so called
because one assumes knowledge of the final transformed result.) We maximize the following

conditional probability function

ps(s) pald; — f,(8)]
pd,l(di)

J1(§)=p§|3(§‘|t_f)=ﬂ (2)

The denominator merely normalizes, does not affect a maximization. Since the logarithm

increases monotonically for positive functions, we may also maximize

Jo(8) = Y In py(s;) + Yiinp ,[d; — fi(8)] + constants (3)

When the signal and noise are gaussian processes, maximizing J, will equivalently minimize

Jots) = LSLI® o 11d = 7] |* (@)

oé o}

the least-squares (l.s.) result. We have eliminated covariance matrices by choices of
transformations which diagonalize and normalize them. Again, coherent noise should be

defined as a second variety of signal.

In fact, a classic (deterministic), arbitrarily normed inverse such as the ! or P,
corresponds to a specific m.p.f. for noise -- the signal being unconstrained by an arbitrarily

broad distribution. We find

e = Laleb o
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for the LP inverse.

The Ls. inverse of many linear transformations possesses a simple closed form. Other

statistics require a method of descent.

For a given estimate §; of the signal, the gradient of J; is

A ¥
gt = e, |§ =5, (6)

- _ Ps \Si) () _2 Qpn [d fJ(S.U)]
ps(sto) i 4 Pn[d fJ(S—U)]

of ;(5¢)

0 _
where Fi; =
] 8s;

1

Primes indicate definite derivatives. Successive gradients become a linear function of the
data only for gaussian m.p.f.'s and a linear f:
s0

gi & —, Fgld; ~ f;(50)] (7)
j

2
o'x(s On

For a linear, or linearized, f, the projection Z Fi‘} becomes the adjoint operation. Most des-
j

cent methods would require that p,(x) and p,(x) have no local maxima to obscure the

unique global maximum of J;. Smoothing the estimates of these distributions will consider-

ably speed the descent: local gradients then better indicate the global maximum.

The simplest method of steepest descent would update
si = s ~ ag; (8)

where o minimizes J,(5; — ag) . With the easily calculated derivative dJ/,/da , a line
search for the best o converges quickly. For a linear f calculate o directly from appropriate
scalar products (the classical I.s. method). Certainly conjugate gradient methods, such as

the Fletcher-Reeves, should converge more quickly.

The approach of this section gives simplicity and robustness to the inversion of highly
non-gaussian noise and non-linearly transformed signal. Specific m.p.f.'s for noise produce
all other robust normed inverses as a subset of this formulation. But for an unbiased robust

inverse, a priori statistics for signal and noise must derive directly from the data.
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Inversion with estimated statistics

Distinguishing signal and noise m.d.f.'s must precede a separation (inversion) of their
corresponding components. A lack of knowledge of one m.d.f. weakens an estimate of the
other. We take the following strategy: estimate the m.p.f. of one component given the
greatest possible over-estimate of the other. Such statistics allow the most pessimistic
possible estimate of the first component. From such an estimate, extract those events that,

for a chosen reliability, are minimally corrupted by other components.

For each iterative re-estimate of the signal we shall choose to linearize the nonlinear
transformation f assuming the new estimate to be a small perturbation of the previous one,
§o. We shall see that his linearization greatly simplifies the transformed statistics and their
estimation. Because of the central-limit theorem, components with gaussian m.p.f.'s yield
gaussian m.p.f.'s after linear transformation. Thus, gaussian signal and noise remain indistin-
guishable as a third useless component, hereafter called gaussian noise. In the previous
section we found that, for gaussian noise, and for a linear, or linearized, f, the MAP inverse
becomes the ls. inverse, made as a series of linear AP inverse If we iteratively extract
(subtract) both nongaussian signal and noise from the data, then the l.s. inverse will
approach the optimum MAP inverse. A linearized f will become increasingly accurate as sig-

nal perturbations decrease in magnitude.

Extract the most reliable signal as follows. Find the l.s. inverse of signal for the linear-
ized f, constraining signal sufficiently for a stable treatment of noise. Next, over-
estimating the distribution of noise after transformation, determine which events in this
linear inverse contain a sufficiently small percentage of noise, with sufficient reliability.
Preserve these events as a reliable perturbation of the signal and disregard others. Iterate
with updated linear transforms and m.d.f.'s until the presence of noise prevents any further
reliable improvements in the signal. Subtract the most reliable signal perturbations (contain-
ing negligible noise) from the data and extract the most reliable noise by similar methods.
With this noise absent, iteratively improve the signal once again, and re-extract the noise.
The amount of corruption allowed in the extraction of a given component will determine the
speed of the algorithm and the number of events considered invertible. At any iter;tion,
however, one may feel confident of having made the most reliable and thereby the most

important improvements in the estimates.

Define the following random variables

§’=F®) -f(5)) ;s m'=n-ny; d =85 +n’ (9

where 71 is previously extracted noise. Consider a series of linear transformations (8) by

the Ls. gradient (7) as a single linear transform Li; of the data, giving the optimum I.s.
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inverse.

Llidit s A= Ld” (10)
J

i

4"

and the corresponding transformed components as
§1/ = L§f ; ﬁ—n = Lﬁ/ (11)

Each prime designates a transformation of a component away from the definition of equation

(1). Because we assume @ to be focused (samples statistically independent), we may write
1
Paz) = [1* [ +—pn (5] (12)

The asterisk here indicates convolution, and the H* multiple convolutions. In order to
suppress the subscripts on m.p.f.'s, hereafter assume that the linear transformation
preserves local stationarity for our a priori statistics. (Such an assumption adds robust-

ness to the signal distribution and should to its perturbation.)

Define an exaggerated estimate of p,.(x) by assuming all events are noise, by ignoring

the coherence of any signal.

. 1
Pr(z) = I*[———pd.( x
i T Ly

1 T
)1 = pn(2) * [[*[ 725 (7] (13)
i Lyt Ly
This m.p.f. must overestimate the transformed noise and all positive moments. If the data
contain no signal, then the estimate is perfect (the signal m.p.f. becomes a delta function).
Estimate (13) easily by generating a random, focused array with the same m.p.f.'s as the
data, transforming the L, and taking local histograms. Because the signal and noise remain
statistically independent and additive after transformation, choices of their m.p.f.'s deter-

mine that for the data:
pa(z) = pg(x) * pydx) (14)

For consistency, always use this data m.p.f. with the other two. With the assumption of
local stationarity, estimate pg- () from local histograms of the transformed data. The diver-
gence of the estimate from the a priori m.p.f. in equation (14) should be minimal. Measure
this divergence with the directed divergence (cross entropy) of Kullback. Minimizing
fpl(x)ln[pl(x)/pz(z)]dx minimizes the "unpredictability” of p,(x) assuming pa(z) to be
the most predictable. lteratively discover the best estimate of p,.(x), given py.(z) and

Pp-(x), by minimizing the following (suppressing primes)

Jalps(2)] = [pal@)nlpy(z)/ fps(z —y)p,(y)dyldz (15)
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A A
+ oS p@)dz — 1P + Zflps(2) - |py(2) | Pz

Add two Lagrange multipliers for the constraints of unit area and of positivity. To calculate
the gradient of J, with respect to each point of the function p,(z), perturb a previous esti-
mate with a delta function: p,(z) + £6(x — z() and differentiate.

5‘6—8—1[4[1!)8(.2) + £8(z — z)] (16)

= f Pa(z) pp(x — zg)dx

" [ ppa(z—y)dy

+ ML Ds(2) =11+ Nolps(z0) — |ps(z)]]

Iteratively perturb ps(x) with the negative of this gradient; an inexpensive line search finds
the correct magnitude. The constraints easily determine the proper values of A; and A, for
any magnitude of perturbation. The second term equally raises or lowers all points of ps(x)
until the constraint of unit area is satisfied. The third term moves each point a sufficient
positive distance to remove any negative excursions. The first term divides the estimate
p4(z) by the o priori value and cross correlates with a shifted noise distribution, contri-
buted by the perturbation of p (z,). The cross correlation thus identifies where the diver-

gence is not uniform and compensates with appropriate perturbations.

The search for § as a focused (independent) random process allows us to estimate its
perturbation §°° sample by sample from d’’. Consider a sample d*’ to be a reliable estimate
of s’ (assume zero-mean noise, suppress subscripts), if its percentage error is less than ¢
with greater than 1 —e probability. Choose ¢ and e as small fractions sufficient for one's
purposes. Larger values will speed the inversion and allow more but less reliable events. A

reliable estimate should satisfy (for positive d)

1-e<pl[-cdss —d=<ecd | d”’ =d] (17)
cd
fps(d — z)pp(x)dz
. —cd

Sp(d - 2)p,()dz

Calculate this function once, then locate those samples of d’’ with satisfactory amplitudes.

Zero all others as unreliable perturbations for §°°.

Approach the extraction of noise similarly. First subtract the most reliable signal and

find the Ls. inverse of all remaining events. Assuming this inverse to contain only signal,
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over-estimate the m.p.f. for §’ in the data domain. If one expects some coherence of noise
over time, then smooth the extraction accordingly. Else redefine the noise as the convolu-

tion of two functions, as we shall illustrate for source waveform inversion.

Inversion of VSP's

We illustrate our methods for differential systems by defining the transformations
appropriate to the 1D inversion of vertical seismic profiles (VSP's). Assume planar, compres-
sional, elastic waves travel vertically in the earth, perpendicularly to the well. For geo-

phones that measure the velocity of vertical displacement, we use the following differential

equations.
Py B rpfuq 18
Ay L (18a)
K9y, o=g(t) (18b)
_ 8y _
Yle=0 = atlt:o—o (18c)

y(z,t) gives the displacement as a function of depth and time; p(2z), K(2), the density and
bulk modulus; and g (£), the source wave form at z=0. With the Neumann boundary condi-
tions (18c), an explicit finite-difference scheme provides y from the signal parameters p, X,

and g.

Now transform signal parameters into focused random processes. Adjacent depths give
statistically dependent values of p and K because geologic formations tend to homogeneous
packages. The derivatives

‘- 8p . K’ = 0K
P oz ’ 0z
however, recognize only transitions, which appear independently. Assume zero values

(homogeneous earth) as a first estimate.

For z=0 at the surface, g({) should be a very short wavelet, unpredictable in fre-
quency content, but with an indeterminate time shift, due to non-unique estimates of near
surface rock parameters. For z =0 at the depth of the first geophone, 2y, g(t) becomes this
short wavelet convolved with all near surface multiples. For this latter case, define a source
by the focused functions w(s) and h(f) where

At
g(t) =f[f'w(s)e"2”s"ds h(t —t7)dt” (19)

0
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For a sufficiently short Af, the Fourier transform of the wavelet w(s) becomes highly
focused. A sufficiently large value focuses the multiples k(). (Definition {19) allows solu-
tion of the "spiking" deconvolution problem). To add slow time adaptability to the above,
replace w(s) by

Ar

fw(s,r)e"zm dr
—-Ar

A good first estimate of w(s) is the minimum phase wavelet for the average amplitude spec-

trum of the data traces.

We now require a linearization of the signal transformation

2%y 8.8 _ 8,8
Ly 5;[52161(] pa76 92 1K 5,0V (20a)
K+ 59 = k2 oy (20b)
Oz dz
0y li=o = 70y |1=0 =0 (20c)

6t

All unperturbed functions must be taken as their previous estimates.

To descend to the I.s. inverse of this transformation by means of the gradient (7), we

require the adjoint transformation of the error of previous estimates with the data,
_ o)
bd(zt) = d(z,,0) = oy (zi,t) (21)

Define this error to be zero elsewhere. The data, d, are measured at roughly equal, but lim-
ited depth intervals. Use the calculus of variations and integration by parts. Solve for g as
an intermediate result. We suppose the data to end at time 7. Invert down to the lowest

depth to produce a recorded reflection.

6 é a
tz a—[ ; a—dd)d(z - Zi) (22a)
alir =05 p 91y, = 3 66z — 24y (220)
8¢, (8
> lz=0 (a_tdd)lzzo (22c)

f EZ"'ZLQ (23&)

szaz 5.0 (23b)
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1

E—q |z=0 (23c)

g =
Perturb signal parameters dp’, 6K°, dw, and Jh directly from 8p, 6K, and 6g. Add a broad
gaussian constraint on signal (the first term in gradient (7) ) to avoid wildly oscillating,
unstable l.s. inversions of noise. Subsequently extracted signal perturbations may thus be
more modest in amplitude, but will be more numerous because less inhibited by transformed

noise. Subsequent extractions, of course, remain free to increase these perturbations.
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