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Inversion of CMP Gathers for P and S Velocity.

Peter Mora

Abstract

A method for inverting common midpoint gather data for the parameters P-velocity, S-
velocity, density, quality factor, and source waveform is described. The method uses an
iterative nonlinear least squares formulation for overdetermined problems. Therefore, an effi-
cient modeling theory is required to enable the required iterations of parameters to be car-
ried out within a reasonable amount of time. The iterations proceed until a solution is located
which minimizes the square error between the modeled and real data. The practical limita-
tions are the ability of the modeling theory to simulate the real data, and the sizes of the
data and parameter spaces which determine matrix dimensions and hence speed of the algo-
rithm. A simple ray tracing scheme for horizontal layers is used as the modeling theory, and
an inversion for P and S velocities in a 16 layer model is performed for synthetic data gen-
erated by the same modeling theory. The P and S velocities resulting from the inversion are

in reasonably close agreement with the true values.

Introduction

The classical nonlinear least squares problem for overdetermined systems can be

solved using an iterative scheme (Tarantola 1982) such as
D1 = P + (@ECT 9% + G ECT N — g(pe)) — G H(pe — Po)] (1

where p, denotes the parameters after k iterations with a priori covariances (; d is the
data with corresponding assigned covariances (;; g is the geophysical theory used to
model the data and g’ is the partial derivatives of g with respect to p. This gives a proba-
bilistic least squares solution assuming that Gaussian probability density functions describe
the data and parameter distributions. The essential requirement of the iterative inversion

scheme given by equation (1), is a theory g which is capable of adequately modeling the

SEP-38



Mora 280 CMP Imuersion

data and is differentiable with respect to the parameters. For highly nonlinear functions g,
local minima in the square error functional may be present. The problem of local minima may
sometimes be overcome by adjusting covariances or solving using a number of different

starting parameter sets p, ( Tarantola, 1983, pers. comm.).

| will consider a horizontally layered system where layer thickness is known, and formu-
late the inverse problem for parameters P-velocity, S-velocity, density, quality factor and
source waveform. The assumption that layer thickness be known will not be a limitation in
the inversion because the layers are sampled at the spatial equivalent of Nyquist frequency.
The data is a Fourier transformed common midpoint gather so the geophysical modeling
theory g, must be capable of modeling attenuative seismic waves at any propagation angle
through the layers. Ray tracing is a fast reliable method, which for horizontal layers amounts
to solving parametric summation equations for offset and traveltime as a function of ray
parameter P. The complex ray amplitudes are computed by evaluating the complex reflec-
tion and transmission coefficient products, and an exponential term that includes both the

linear traveltime phase shift and attenuation via Futterman's theory of 1962.

Definitions

The parameters are the variables being inverted, specifically the P-velocities, S-
velocities, densities and quality factors of the layers and the source Fourier spectrum.

Parameters are put into a partitioned column vector

o3
B o] 2L
B
p = = |p| = (2)
. Q@ .
Pu S S,
Sy
where, p, = parameter m

a = column vector of P-velocilies

8 = column vector of S-«welocilies
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p = column vector of densities
@ = column vector of quality factors
S = column vector of source spectrum
The subscripts {=1, . . . , L is used for layer number and w=1, . . . , ¥ denotes angular

frequency. The data consists of Fourier transformed common midpoint traces arranged into a

partitioned column vector

;
Dn
d, D, Dyw
d = | . = 1. = . (3)
dy Dy Dy,
Dyy
where, d, = delan
Dy, = column vector of data at offset h = Fourier transformed trace
Dy, = data value af offset h and angular frequency w = wvalue in a trace

d = g(p) = geophysical theory = maotriz structured identically to d above

but with g and G replacing d and D,

So far, the definitions are basic nomenclature specifying the parameter and data spaces and

extensions to define the required matrix of partial derivatives g' are given below.

0,.G1 . . 895Gy
— —agn =

0P, : .
8aGy . . O5Gy
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1
1 1
9,Gi1 - - . 8a,G11 8s,Gi1 . . . 85,6y
8o, G1w - - - Ba,Grp 85, Gy . . . 8s,Gry
J ]
=g = (4)
1
8o, Garr - - - Ba, Gt 9s,Gar - . . 8s,Gmn
84, Gy - - - Oa,Gay d5,Guy - - - Bs,Guy
: |

Modeling theory

Parametric ray equations to solve for offset h and traveltime T as functions of ray
parameter P are used to model rays travelling through horizontal layers. Each ray has a
complex amplitude that is the product of the source spectrum, the reflection and transmis-
sion coefficients, and an exponential term which contains the linear phase shift due to the
traveltime delay plus the attenuation effects. The modeled data at offset A and angular
frequency w is given by the sum of responses of all possible rays which travel an offset A;
that is

G = 3 Gy

modeled data for offset h and angular frequency w

Neglecting ray spreading, the ray amplitude at angular frequency w is

Ghmyw = Su Uh‘rayw thuy Th:'ay T,

ray

= modeled dala for a ray af frequency w traversing offset h

where, S = source
U = exponential terms including travellime effect and attenuation
R = complex elastic reflection coefficient product
T* = complex elastic transmission coefficient product (down)
T~ = complex elastic transmission coefficient product (up )
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For primary P reflection events only, the ray summation simplifies to

L
=1
and Guw = Sw Unw Fn, Tn, Tn, (6)
-1
where Tb = Thhe (7)
d 1
k=1
1-1
Ty = Ty (8)
k=1
Rh‘ = Rh‘ (9)
Unw = exp[—w(i(ry + dyuyn) + 7)) (10)

The subscript h; indicates a ray which is reflected from the base of the [-th layer and

traverses offset A. The remaining terms are defined below.

6, = Zin|¥ 1
v wo
L1
Y = 20 Eni/ @ (12)
k=1
)
Tn, = 20 the (13)
k=1
2y 2y 2k
t = = = — (14)
e 0 €08 G, ¢ /T~ (Pra) V1 — AR

—_ = = 25! o/ AE =T (15)

i—1 i~1
hl = 22 Zktanehk =2
k=1 ¢ Icgl \/(Ph,kaj ? k=1

sin@hlk
where P = P, = Pploy, ... ) = — (16)
k

and A, = P1a 17)
k

The angular frequency wyg is the the quality factor reference frequency used in

Futterman's almost constant Q dispersion theory.
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Computation of partial derivatives

The partial derivative matrix g' is defined by equations (4) through (17) and c be
easily computed while performing the modeling for the case of ray tracing. The derivatives of
g, With respect to parameter p,, are required for a ray which travels a horizontal distance

equal to the specified constant offset . We have the ray amplitude function
Ghl = G(Ph(alu s .al)sal, P .O(L;P;ra) (1 8)

Where p., denotes all model parameters other than P-velocities. Differentiating with

respect to parameter p gives

G P 3G p = o
= Qy
aGh‘ 0P 6aj h=const Ay P=const (19)
0P ih=const - G
) P = DPxa
Pxa P =const
The value of :{f may be determined from equation (15) by setting the differential
J |h=const

dh; equal to zero.

_ o _AemedA
dhy = zkzzjl 2 - 177 = 0 (20)

From equation (17) the differential d4, can be evaluated.

dak

= a(- 22 _
A = Al- (21)

2%

The differential dh, is seen to depend only on ray parameter P and the P-velocities above
the 1 +1-th layer. Now it is possible to evaluate the required partial derivative g'. If all the

da, are zero except for da;, equation {20) becomes

2 = Akzzlc ZAJ'ZZ]- ‘
dh; = dP|— da.
l P kgl (Alc2 -1 )3/2 % aJ(AJz - 1)3/2 J
oh dh
P i aa,- % ( )
8h 1

oF _ by - PAPy 5 Abz | (23)

aaj h=const % aj(Ajz - 1)%/* lk=1 (Akz —1)3/% J

Equation (23) shows how to find the partial derivative of ray parameter with respect to P-
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velocity of one layer while keeping offset h constant. The partial of the gather with respect

to ray parameter can be evaluated numerically using a finite difference formula. The

G
oP’
above two terms are plugged into equation (19) to compute g'. All that remains is the
evaluation of the partial derivatives of gather G with respect to parameter p. Differentiat-

ing equation (5) with respect to p yields

G _
op
I L T 0nw 1 %Fn 1 3w 8T, | (24)
= | Sw 0 Uyw 0P Rp, Op T 0P Ty 6pJ

The various partial derivatives in (24) can be computed using equations (5) through (17),
along with the expressions for the reflection and transmission coefficients. The required

partial derivatives in equation (24) are given in the appendix.

Numerical example

A simple numerical test was carried out to illustrate the algorithm under ideal cir-
cumstances. The iterative inversion formula given in equation (1), with parameters Gaussian

distributed about their values at the previous iteration, is

Per1 = Pet (@l Cilge+C ) gl Ci [d—g (pe)]

Diagonal forms of data and parameter covariance matrices were used so this formula

becomes
-1
Prer = pk+(9’kg’k+0§[0§] )g'ild —g ()]

The elements in the matrix [ag] are simply the P and S velocity variances o,z,p and 03,. A

synthetic common midpoint (CMP) gather was generated using the 16 layer model shown in
figure 1. These model parameters are denoted by p;-,,. The field geometry is a 16 fold com-
mon midpoint gather with a minimum offset of 0 km and maximum offset of .4 km. The record-
ing times were from .2 sec to .704 sec at a sample rate of .008 sec. The time sample rate
of .008 seconds is approximately equivalent to the depth sample rate of layers of .008 km
for a P velocity around 2 km/sec. Therefore, there is no requirement that the location of
layer boundaries be known in the inversion. The gather was computed by summing the P
wave primary reflection ray responses, with ray spreading neglected, so the gather

represents only a somewhat unrealistic ''partial ray response' of the full theoretical

SEP-38



Mora 286 CMP Imversion

'g (a)
o
\w
£ o-
xXa
e
8
o
>
o
0 0.2 0.4 0.6
depth (km) .
73
7))
£ -
‘x-'-—c
2
)
o
O —
>
()
0 0.c 0.4 c.6
depth (km)
(c)
0
ow
N e
g;u
2
‘»
c
O
O
0 0.2 0.4 0.6
depth (km) :

FIG. 1. 16 layer model used to generate data d. The layer parameters are denoted pgp,, -
(a) P velocity model, (b) S velocity model, (c) Density model.
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wavefield. The source waveform is the delayed second derivative Gaussian wavelet shown
in figure 2. An isotropic source directivity pattern has been used in the modeling though

inclusion of a more realistic directivity would not be difficult.

The synthetic gather or data d=g(p,-,.) is shown both in a perspective view and as
traces in figure 3 to highlight the amplitude and phase variation with offset. These variations
supply the information which allows the wavefield to be inverted for both P and S velocities
even though the wavefield is composed purely of P wave primaries. The amplitude and
phase variation with offset is caused by varying superposition effects resulting from
increased ray traveltimes as angle through the layers increases, plus the variation of P and
S wave partitioning as a function of incidence angle. The reflection coefficient has the
dominant influence on the amplitude versus offset variation, while the transmission product
and superposition effects are weaker. Note that the inclusion of a free surface effect on
the source directivity would be seen as an extra term in the scattering coefficient product.
In this simple experiment, the velocities of the uppermost layer are assumed to be known
and so the free surface effect provides no additional information that would be useful in the

inversion.

For the purposes of illustrating the invertibility of a CMP gather for both P and S velo-
city, it was assumed that the source waveform, the density for all layers, and the P and S
velocities of the uppermost layer are known. The model parameters p are therefore the P
and S wave velocities of the 15 lower layers of the 16 layer model. The initial guess p, used
for the inversion was a linear fit for the P and S velocities in the lower 15 layers as shown in

figure 4.

The crucial requirement of the initial guess, is that the average P velocity never vary so
far from the true average velocity that the kinematics of reflections be incorrect by more
than about 1/4 of the fundamental period of the source which is the region of approximate
linearity of oscillating functions. If reflections are misplaced by too much, then the inversion
has little chance of succeeding because the algorithm requires that the modeled wavefield
be close enough to the data wavefield so that there is approximate linearity between the
two wavefields. The local minima in such optimization problems involving oscillating signals
are typically spaced at about half of the fundamental period so the inversion is expected to
converge to a local minima if the initial guess is so bad that events are misplaced by more
than about a half-period. Tricks can sometimes be used to get out of local minima but none
have been tried in this example. The other important factor crucial to the stability of the
iterative algorithm is the data deviation divided by the parameter deviation o4/ op Which can
be thought of as a damping factor. In this example, the damping factor was chosen by trial

and error, such that the parameters were approximately critically damped as the iterations
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FIG. 3. The synthetic data d to be inverted. (a) Data d in perspective view , (b) Data
d as traces.

proceeded which is a safe way to ensure stability. One problem is that events are moving
around slightly as P velocity varies, so nonlinearity in P velocity is much stronger than in S
velocity. Hence, more damping was given to the P velocities than the S velocities so

—1y -1 i -1 -1
Oyp >0ys - T1he relation used was g, N 2.60, .

After about 16 iterations, the normalized square error [d —g (p,)]7[d—g (p.)}/ (d7d)
was very close to zero as shown in figure & which indicates a best fit solution has been
located for this noise free data. The P and S velocities were still changing very gradually
after the 16-th iteration indicating nearness to a stationary point in the square error func-

tion. The modeled data at every fourth iteration is shown in figure 6. By the eighth iteration,
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FIG. 4. The true parameters p;.,. used to generate the synthetic data d and the starting

guess pq for the iterative inversion algorithm. (a) True P velocity and starting guess, (b)
True S velocity and starting guess.

the naked eye cannot perceive significant differences between the data d and the modeled
data at that iteration g (pjp).

Figure 7 is a plot of the difference between d and g(p) at every fourth iteration
demonstrating that the difference between the true data and modeled data decreases as
the iterative inversion proceeds. The most important test of whether the inversion is yield-
ing a significant answer is the comparison between the true P and S velocities- and those

obtained from the inversion. The result is shown in figure 8 and indicates that the inversion
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FIG. 5. Normalized square error [d —g (p;)]17[d —g ()17 (d7d) .

was successful in this simplistic synthetic test in that the P and S velocities obtained from
the inversion after 16 iterations have a fair accuracy. All the velocity jumps have the

correct sign and approximately the correct magnitude.

It is noteworthy that the P velocities in the lowest two layers of figure 8(a) are signifi-
cantly in error though the velocity jumps are not too bad. After 16 iterations these velocities
were still gradually converging. This indicates that the P velocities of these layers exert a
weaker influence on the gather relative to the P velocities of the other layers and so con-
verge more slowly. That the parameters with the strongest influence are most easily inverti-
ble is an inherent limitation of inversion. This can be stated mathematically, that there is an
effective cutoff in eigenvalues of (g'7Cilg' +C; !)7! introduced by choosing Cy and (.
Singular value decomposition a useful tool to to study parameter sensitivities and this cut-
off.

Discussion

Results of the test case used in the previous section indicate that it is possible under
ideal circumstances to invert for P and S velocities using only P wave data. The scheme is
based on standard nonlinear inversion algorithms where the required partial derivatives of

the modeled data with respect to the model parameters were computed during the forward
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FIG. 6. True data d and modeled data g(p) every four iterations. (a) Data d,
(e) g(p,2),
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modeling phase. In more realistic situations, the inversion would be far less likely to succeed

for a multitude of reasons, including use of an oversimplified or inaccurate modeling scheme,

assumption of an oversimplified geology, near surface effects on amplitude and traveltime

for the different shots and geophones, and ''noise', that is anything not allowed for. The

method also requires average P velocities with reasonable accuracy which can usually be

obtained in practice using conventional velocity analysis techniques.

The difficulties of

inversion discussed above, may be taken into consideration, but the solution is bound to

degrade as noise is added and increasingly poorly constrained parameters are introduced to
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FIG. 7. True data d, and the difference between the true data and modeled data d — g(p),
every four iterations. (a) Data d, (b) d-g(pg), (c) d—g(ps), (d) d—g(pg), (e)
d-g(pi2), () d—g(p,g).

refine the modeling theory.

Probably the most fundamental problem, is the use of a simplistic forward modeler.
Without the intrabed and particularly near surface multiples, the modeler and hence the
inversion will probably fail miserably in many real situations. However, the modeling could
easily allow for multiples by summing more ray paths in the pre-existing ray theory, or by
using some more sophisticated and less efficient modeling scheme such as propagator

approaches. Analytic modeling methods have the advantage that the partial derivatives
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FIG. 8. True velocities p,, and resuits of the inversion after 16 iterations p,g. (a) True
P velocities and result of inversion after 16 iterations, (b) True S velocities and result of
inversion after 16 iterations.

0grn/ 0p,, can be computed directly during the modeling, while numerical modeling schemes
such as finite differences require some perturbation technique to obtain the approximate
partial derivatives (Tarantola, 1983). The near surface effects can be included as parame-
ters characterizing the near surface transfer function at each shot and geophone. Noise will
always degrade the solution but perhaps with careful choices of C; and C, a meaningful
solution can still be obtained. A more difficult problem is presented when the actual geology
is more complicated than that used in the modeling scheme. A more advanced modeler capa-

ble of handling complex geology could prove to be prohibitively expensive in computer time,
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and the system may become underdetermined if too many parameters are included. Use of
many gathers simultaneously would help in theory, but the size of such a problem is too large

for most present day computers to solve.

Conclusions

In the ray modeling scheme outlined here, partial derivatives of the synthetic frequency
domain CMP gather with respect to the model parameters are computed during the forward
modeling. The model parameters are the P and $ velocities, densities and quality factors of
plane layers and the source waveform. Inversion may therefore be carried out using stan-
dard nonlinear least squares iterative algorithms. A numerical test is carried out where P and
S velocities are inverted in a stack of 15 layers sampled at about the spatial equivalent of
the Nyquist period of the CMP gather. The results of the inversion are encouraging in that

both P and S velocity are inverted with reasonable accuracy.
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APPENDIX
89S, _ [ 0 p %Sy
8}’ - 1 p = Sy
o p#Ea,p#Q
9 Upjw 0 P = a;,p = @ wherej >1
1 1
Unjwwtnw(2 — 4P%aP)i + (1+id,,/ (2]
2 P =0
\ fXJ(1 —Pztxj)
AR, 0 p=@Q,p =S
ap‘ = P = 0;,8;,p; where j < lorj > l+1
0 Ry,
p p=aj,ﬂj,pj'whe'rej =lorj = 1l+1
( 0 p = Q,p = S
8Ty’ ~ 0 P = a;,B;,p; where j >1
p T/~ T/~ |
Th:_{'_ ap P = o;,8;,p; where 7 = 1or l-1
6T+/— 6T+/—]
-1 1 e 1 h, ,
Th‘:/ Th+/.—l api 1 T':./'_ apf J p = aj . ﬂJ s pJ where 1 <_7 <l-1
(A 1]

The partial derivatives of the reflection and transmission coefficients can be easily

using the centered finite difference formula

computed numerically by

df _ [f(z+Az)-f(z—-Az)
dzx 2Az )
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