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Synthetic VSP in frequency-independent Q media

Zhiming Ii

Abstract

This paper presents an algorithm for calculating Synthetic Vertical Seismic Profiles
(SVSP) in layered media with frequency independent . The effects of attenuation and

dispersion are also discussed.

Introduction

SVSP has played an important part in solving the inverse problem of field VSP data. By
iteratively comparing the field VSP data with the SVSP and recursively adjusting the param-
eters used in SVSP modeling, one can not only obtain the structural information, but also

improve the estimates of rock velocities and attenuation factors, as well as seismic noise.

SVSP can be constructed analytically if the following two assumptions are satisfied:
(1) vertical incident wave; (2) horizontally layered media. To calculate SVSP with a non-
vertical incident wave (wide angle VSP), or SVSP of a medium with dipping layers, numerical
ray tracing and other algorithms are needed. This paper will discuss only the models with
normal incident wave and flat layers. The wave relation between any two layers in such a

model can be represented by a transport matrix equation.

The validity of regarding the quality factor, Q, as being frequency-independent, and the

other physical aspects of the modeling, are discussed first.
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Physics of the model

The quality factor, @, which characterizes a rock's absorption of seismic waves, is
defined by (O'Connell and Budiansky,1978)

W

Q= 47TA—W, (N

where W is average energy stored per cycle of vibration, AW the energy loss per cycle.
O'Connell and Budiansky (1978) also defined the relation between @ and the "loss angle",

@, as

1
=t _1—, 2
@ = tan 0 (2)

where ¢ is the phase angle by which the strain lags behind the stress.

The stress-strain relationship in a linearly viscoelastic material is given as (Boltzmann,
1876)

t
o(t) = m()*e(t) = fs(t-—T)m(’r)dT , (3)
()

t
£(t) = s(£)*o(t) = folt -T)s(1)dT, (4)
o]

where g(t) is the stress, =(£) the strain, m(¢) and s(¢) are the inverse Fourier transforms

of the viscoelastic modulus and compliance, respectively.

When a unit Heaviside step function, H(t), is used as the strain in (3), o(¢) becomes
the relaxation function and m.(f) is the derivative of the relaxation function. On the other
hand, when H({) is used as the stress in (4), £(¢) becomes the creep function and s(¢) is

the derivative of the creep function.

Because creep functions usually can be regarded as proportional to a power of time t,

Kjartansson (1979) used the following form as the creep function

1 t ¥
(L) = MQFU—*‘Z’)’){K} H(t), (5

where Mg ,I'(1+27v), and t, are scaling factors. v is a constant determined by the proper-
ties of the material. By relating equations (2), (3), (4) and (5), @ can be represented as
(Kjartansson, 1979)

%: tan(my) . (6)
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Because 7 is a constant, equation (6) shows § as being frequency-independent.

This derivation of frequency-independent § has some restrictions because of the
approximation of the creep function. It has been observed that § is frequency-dependent
over either very low or very high frequency ranges. Other factors, such as rock saturation,
pore pressure, confining pressure, and temperature, may also cause § to be frequency-

dependent.

However, many experiments have shown that @ is nearly constant over the seismic fre-
quency band, 10-100 Hz (White, 1965). Figure 1 (a) shows the measured @'s of dry and of
partially saturated Massilon sandstone. Figure 1 (b) depicts the @'s of vycor porous glass.
The curves show § to be nearly constant over the seismic frequency band. Therefore, the

frequency-independent ¢ model will be used in our SVSP modeling.
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FIG. 1. (a) Quality factor § vs. frequency in Massilon sandstone at room pressure and tem-
perature. (b) Measured @ vs. frequency in vycor porous glass. [Reprinted with permission
from Nur, 1980.]

Other physical characteristics of the viscoelastic media must also be discussed in
SVSP modeling. In viscoelastic media, seismic phase velocities, reflection coefficients and
transmission coefficients all become complex numbers, because attenuation is involved in

the wave propagation mechanism. When ¢ is assumed to be frequency-independent, the

. 7
&] , (7)
Wy
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where v is a reference velocity (real number) at reference frequency wg, j=V—1, and y is

a constant given by equation (6) (Nur, 1980).

In the case of a downgoing normal incident wave, the reflection coefficient, F;(w), and

the transmission coefficient, T;(w) of interface i, are

PiCiw)—pir1Ci41(w)

Rulw) = pici(@)+pip1¢i(w) (8)
_ 2piCi(w)
Tyw) = pici(w)+piyiCisi(w) *

Because the quality factors of most rocks exceed 10, the value of 1/ § is usually so
small that tan™1(1/ @) can be replaced by 1/ Q. The accuracy of this approximation can be

seen in Figure 2. Thus, we can rewrite v (equation (6)) as

v = — (10)

&b}
°
(6D O ~we-n tan~'(1/Q)/ n

quality factor

FIG. 2. The curvesof tan™!(1/ @)/ mand 1 / n@.

The amplitude of a seismic wave decays exponentially along the ray, this decay can be

represented by the following expression:

Alw) = Ag(m)exp{—a(w)z], (11)
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where A(w) and Ag(w) are the amplitudes at two sites separated by distance z, a(w) the
attenuation coefficient of the medium. Because the wave's peak energy is proportional to

the square of its amplitude, the relative energy lost per cycle, or per wavelength A, is

AR (2)—A%w) |
480 [pea

AW _
Wo

=1 - exp[——Zcx(w))\] . (12)

Equation (12) can be simplified by using Taylor's series expansion and dropping out the
higher order terms (because aA<<1 for most rocks), so that o can be related to § more
explicitly,

AW

_ﬁ’_o—z 1 —exp[—2a(co)>\} =1 — [1 —2a{w)\+ %—{2&(@}\]2— ce ] = 2a()A . (13)

Because W, is the peak energy stored per éycle and is twice the average energy W,

equation (13) can be rewritten as for a sinusoidal signal,

AW _ AW _
= 2 W = do(wA . )

Therefore, the relationship between the attenuation coefficient, a(w), and the quality
factor, @, is seen by comparing equations (1) and (14),

T

_ w
2o 2v(weQ’ (18)

alw) =

since A = 27v(w)/ .

Transport matrix equations of SVSP

VSP is the seismogram recorded by geophones laid down in a borehole. Both the down-
going waves and the upcoming waves are present in a VSP. As shown on Figure 3, these

waves across an interface are related by the following expressions (Claerbout, 1976)
U0 = [1=Rul@)] Uy i) + B (2)D7 () (16-1)
D“l(w) = ——Ri(w)Ui+1(w)+Ti(w)D’t-(w) . (16‘2)

Equations (16-1) and (16-2) can be rewritten in matrix form,

1 1 R-,;(C\))
= T,(w) [Fi(w) 1
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FIG. 3. Waves across an interface. D’;(w) is the downward incident wave on the interface,
D; (@) is the downward going wave from the interface, U’;(w) is the upward coming wave
from the interface, U;,,(w) is the upward incident wave on the interface.

To relate the waves at the top and the bottom of one layer, as depicted on Figure 4,
both the attenuation factor, exp(—a;(w)Az) and the time delay factor, exp(—jwAz / v;)
must be taken into consideration. The time delay factor, exp(—jwAz /v;) is obtained by
relating the Fourier transforms of the wave function 7(t) to its delay F(t —Az /v;), because
the wave transportation being discussed is in the frequency domain. When the normal
incident waves are planar and the subsurface layers are flat, the relationship between

waves on both sides of a layer is

—ay(w)Az —jwhz/ vy 0

e a;(w)dz +jwAz /1y,

U-,;(G}) e

D,-(co)

U'i(ﬁ))
D'i(w)

. (18)

0

Combining equations (17) and (18) yields the transport matrix equation for layer i
(Ganley, 1981)

Ui(w) _ U-,'_+ (&))
Di(w)| = & DHi(w) ’ (19)
where
1 Ey E;R;i(w)
Ai - Ti(ﬁu)) E’{R,;(w) E; ’ (20)
E; = exp{-—ai(w)Az -J wAz/vi(w)} , (21-1)
E'= exp[ai(w)Az +jwlAz/ 'z}i(w)} , (21-2)
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FIG. 4. Waves at top and bottom of a layer. «;(w) is the attenuation coefficient of layer i,
and v;(w) the phase velocity of seismic wave in layer i.

The waves in layer i and layer m, (i < m), can be related by the expression

U,;(w) _m—l Um(&))
Dw)| = 1% |p ()| (22)

Equation (22) is called the transport matrix equation characterizing the system of
layers from layer i to layer m: any two of the four quantities, U;, D;, U,, and D_,, can be

regarded as the input of the system, while the other two the output.

For a model of n layers overlying an infinite halfspace, one can write the transport

equation as

UI(GO)

D, (@) = ﬁA Un () . (23)

L% D ()

There is no reflection from the halfspace below, so the upcoming wave [/, ,,(w) equals zero.
On the surface, D (w) = 1-Fg(w) U,(w) if the source signal is a delta function generated

from beneath the surface. Thus, we have (Ganley, 1981)

n

= [14

k=1

Ul(w)

0

Dn+1(&)) ’ (24)

After equation (24) has been solved for U/;(w) and D,(w), the other upcoming and

downgoing waves at any layer can be obtained by the following equation
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i-1

14t
=1

Ui(fD) —
k

D-;_(w)

U,(w)

D](C«)) ! (25)

where A ! is the inverse of A,. The seismogram recorded at depth (i—1)Az, X;(w), is the

sum of the downgoing wave and the upcoming wave at that depth; that is,

X () = Dy(w)+ U(w) . (26)

The time section of SVSP at depth (i—1)Az (trace i) can be obtained by the inverse

Fourier transform of X;(c).

The coefficient matrix, A, is obtained using assuption that only plane waves exist.
When the incident wave is spherical or cylindrical, the divergence factor must be incor-
porated into A;. The main contribution of the energy on VSP comes from the downgoing
waves, because the reflection coefficients are small compared with the transmission coeffi-
cients. Therefore, we can use the divergence factor, J;, for the downgoing wave, as an
approximation of the total factor of divergence. For a point source, J; is given by

Zi-1

Ji, = s (27)
Z;

where z;_, is the depth of geophone i, and zy=1. For the line source, J; is

Z_1
J.,; = aEE— (28)
Z;

The relationship between D;(w) and D% (w) in equation (18) s, then,
D«,;(G))=e (oy(w)Az +jqu/u,-)Ji_l

is,

. Therefore, the coefficient matrix for non-planar incident wave

1 E; EiR;(w)
A= T () [EVR(), Y BT (29)

Because the modeling is done in the discrete Fourier domain, the wave energy at the
end of the SVSP must be neglectable, if the aliasing problem in the time section of SVSP is to
be avoided. Choosing the sample rate of frequency, Aw, to be small enough can minimize the
aliasing effect. Another limitation in calculating SVSP by the above procedure is that the
zero frequency should be replaced by a small number, say 1078, in computing the zero fre-
quency velocity by equation (7), so that 7;(w=0) is not zero and the transport matrix equa-
tion is solvable. Other digital processes such as band-pass filtering and muting (before
direct arrivals) have also been incorporated into our program. The program has the option to

choose whether the source signal is to be a delta function or a wavelet of decayed
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sinusoidal function. When the source wavelet is given, the seismogram can be obtained by
convolving the impulse response of the model with the wavelet in time domain, or by multiply-

ing of both spectra in frequency domain.

Figure 5 shows a synthetic VSP seismogram of a four layer model. The reference fre-
quency. is 46 Hz, the reference velocities - are: wg,=1500 meters [sec,
V2 =8000 meters [sec, vygg=4000 meters [sec, v,,=6000 meters /sec. The densities

3. The quality fac-

are: p,=1.5 g/cm?B, p;=2.0 g/ cm3, p3=8.0 g/cm?, py,=8.56 g/cm
tors are: £;=100, §{,=60, &3=80, ,=100. The thicknesses of ‘Iayers are:
z,=160 melers, z,=820 meters, z3=200 meters. The fourth layer is the haifspace.

The first breaks on the figure are direct arrivals, while the reflections and the multiples show

up later.
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FIG. 5. A SVSP seismogram of a four layer model. Geophones are spaced 40 meters apart in
a borehole.

The algorithm for calculating the SVSP is valid even when non-constant § models are
proposed. Such models require changes only in the subroutine that calculates the parame-

ters such as the phase velocities, the reflection and the transmission coefficients, etc.
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Attenuation and dispersion

Seismic wave energy decays drastically along the ray path. Most of the energy loss is
due to the following factors: geometrical (spherical, or cylindrical) divergence, attenuation,
diffraction, reflection, and transmission. Of these factors, the rock attenuation plays an
important part in the mechanisms of seismic energy loss. The reflection and the transmission
are much less important in the energy decay. Figure 6 shows a three-layer model, with vary-
ing values of Q. Figure 7 shows a comparison between SVSP with a non-attenuation (@=)
model and a frequency-independent & model; both models otherwise have the same parame-

ters as depicted in Figure 6.

source earth surface
\\T\ r % NN\ . NN NN \ SN RN 3 AN N NN
E 5 Vo1 = 3000 m/sec
400 m .% p 3
E ) py = 2.0 g/cm
| i
\ \ \ AY NN N 3 NN
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m % 4 = 1,85 /cm3
‘l/ o | 9 pa g
\\ \ g \ NN AN N ~ AN A £y N
i Vga = 4000 m/seg \hol?spoce
P ~ 2.0 g/cm3

FIG. 6. A three-layer model whose impulse responses are shown in Figure 7. The & of the
non-attenuation response is infinite. For the attenuated response, the values of § are,
@,=100, §,=560, @3=100.

The phase velocity of seismic wave has the unique relationship (equation (7)) with the
attenuation parameter, 7, in the Standard Linear Solid (SLS) model (Nur, 1980). A wave trav-
eling through the SLS media will be distorted, because different frequency components have
different velocities and different attenuation coefficients. To show the effects of disper-
sion, a plot of the waveforms of direct arrivals calculated at different geophone positions

within one layer, is shown in Figure 8. The wave spreads out as it travels along.

Seismic attenuation coefficients, velocities, and densities of different rocks can be
estimated well by laboratory measurements of rock samples under specified conditions, such
as saturation, pressure, and temperature. These parameters used in initial SVSP modeling
can be adjusted to match the VSP field data, if the general geology information of the area
is available. They can also be used as references for classifying the rock types of the

layers, after we have obtained the attenuation coefficients and the velocity distributions
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FIG. 7. (a) The non-attenuation SVSP of the model in Figure 6. {b) The SVSP of the same
model as (a) with the attenuation parameters specified in Figure 6. Even with the lower plot-
ting clip in (b), the later multiples are so weak that they do not show up in (b) as they do in

(a).

from the conventional seismic data processing and the SVSP matching.

Conclusion

The synthetic VSP can be calculated in the frequency domain; it can incorporate the
frequency dependent velocities, attenuation coefficients, reflection and transmission coef-

ficients., @ is frequency-independent for most rocks over the seismic frequency band.

The effects of seismic attenuation and dispersion have played important roles in
analyzing the physical properties of rocks from VSP. The SVSP can be constructed by
assuming one set of rock parameters, and reconstructed by comparing the resulting SVSP to

the real VSP data. This parameter matching can offer some useful information not only about
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FiG. 8. Waveforms calculated at different geophone positions. The minimum phase source
wavelet is shown in (a). The wavelet becomes mixed phased as it travels along.

the structure itself but also about the rock's physical properties.
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China unwraps micro
compatible with IBM PC
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BY ALEXANDER BESHER

Contriburor

ust when it appeared that all the

IBM PC-compatible computers had

come out of the woodwork, a new
compatible has been announced by the
People’s Republic of China (PRC).

The Great Wall 100 is a 16-bit machine
that has been developed by the Beijing
Research Institute of Electronic Applica-
tion in cooperation with the Beijing Wire
Communications Plant, which is actually
manufacturing the computers. Both firms
are government owned and operated.

But IBM need not lose any sleep over
the Great Wall just yet. Only 1000 models
have been shipped so far, and the price of
the PRC personal computer is still far from
competitive at 30,000 yuan (approximate-
ly $15,000 in U.S. currency).

Although the Great Wall 100 comes
equipped with a game joystick and control
panels, it’s not likely to become a source of
entertainment for the vast majority of
Chinese families, who can il afford to buy
the machines. Chinese officials say they
are developing application software to
address their country’s most immediate
and pressing needs in such areas as
agriculture, water-power projects, meteo-
rology, construction, medicine, machine
building, mining, railways, the textile
industry and national defense.

The Chinese claim their machine has
complete compatibility with IBM PC
software, since the Great Wall 100 will
reportedly run the MS-DOS, CP/M-86 and
UCSD p-System operating systems as well
as Oasis and QNXI. The standard Great
Wail 100 comes with the newly developed
Chinese character disk operating system
(CCDOS), so that Chinese characters can
be used in various high-level languages
that are supported by CCDOS. A two-level
simplified Chinese-character library with
over 7000 Chinese characters is stored on
the floppy disk and can be called into the
main memory in less than 20 seconds.

The Great Wall can also communicate
with a mainframe and has the capability of
hooking up with a local-area network. The
local-area network is still being developed
by Qinhua University in Beijing and is
expected to be operational in 1984.

The Great Wall 100 comes with a 4.77
MHz 8088 microprocessor; 256K RAM,

Alexander Besher is a frec-lance writer who
recently returned from an assignment in the
People’s Republic of China.

0 January 23, 1984 InfoWorld

which is expandable to 512K; 40K ROM;
two 320K, 5%-inch floppy disk drives (two
additional floppies are also available); a
high-resolution green-phosphor display;
and a parallel-printer adapter. The ma-
chine’s main memory can be expanded to 1
megabyte, and a 8087 math processor can
be incorporated with the central Intel
8088 processor.

The Chinese are in the process of
converting a number of popular American
application software packages — including
data-base management, word processing,
statistics, finance and accounting and
graphics programs — into Chinese for the

Great Wall 100.

Instruction manuals come in both
English and in Chinese, so apparently the
Chinese are not ruling out the possibility of
selling the Great Wall 100 in the West
once they’ve geared up production of the
machine,

As the sales brochure states, “Great
Wall 100 will remain in the forefront of
modern microcomputers and become the
most faithful and capable assistant of
yours. You are welcome to use the Great
Wall 100.”

Manufacture of the Great Wall 100
comes on the heels of the Reagan
Administration’s announcement last No-
vember of more liberalized trade restric-
tions on high-technology exports to China
than in the pist. Among the items
expected to get export clearance much
more quickly are microcomputer
systems. [ J



