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Incorporating reflection and transmission coefficients

into one-way finite difference equations

Jeff Thorson

Wave equation migration can be formulated as the generalized inverse to wave equa-
tion modeling. This is most easily seen by assuming that the medium has a constant velocity
and examining the form of the migration operator in the wavenumber-frequency domain.
Migration remaps the input domain from (w, k;) to (k,, k;) by the transformation
k2 = o?/v? — k2. The only region of the (w, k;) domain where the inverse cannot be han-
dled properly is the evanescent region, k2 > w?/v?: the solution in this region is exponen-
tially increasing. However this data in the evanescent domain is handled, by use of an
exponential decay or by a zero truncation, the resuit is that migration is modified from an
exact inversion process to a generalized inversion process. Evanescent events as a conse-

quence are ignored in the generalized inversion.

The term inversion, as it has been used up to now, has meant the effort taken to

invert the wave equation modeling operation. The modeling operator is

d(z,») = fdz etAzy (2) (1)
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where A is the square root operator in z,

A= (2)

1/2
wz
5+ 0z

v
and u, is a function (vector) in . We can incorporate appropriate boundary conditions into
A at the edge of the z grid; absorbing boundaries are a good choice (Clayton and Engquist,
1980). Equation (1) is limited to modeling zero-offset sections; a similar modeler may be

written down for the more general geometry of non-zero offset.
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There are many obvious limitations to equation (1) as a modeler of zero-offset seismic
data; not the least of which is a disregard for reflection and transmission coefficients.
These effects are taken into account in the full (two-way) wave equation, but are com-
pletely ignored in the one-way formulation. For example, the form of the downward con-
tinuation operator in (1), expiAz, guarantees a transmission coefficient of unity for pro-
pagating waves. If anything is to improve upon migration as a generalized inversion pro-
cedure, it obviously must be based on a modeling scheme more accurate than that of equa-
tion (1) (Mora, 1984).

With this need in mind, we shall attempt to account for the proper reflection and
transmission coefficients in a one-way operator. We shall assume that the medium is isotro-
pic, acoustic, two-dimensional, and of constant density. The background velocity of the

medium can be a function of z and z. Discontinuities in velocity can be present in z (and
z).

First, the differential equation that leads to the modeling operator in equation (1) is the
inhomogeneous one-way wave equation

ou_

5s = —iAu (3)

in which A is a function of v(z) (equation (2)). This equation is a "perfect” modeler as long

as the velocity v is independent of z:
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If 3%4 0, the commutator (the second term in (4)) vanishes. The u that satisfies the

homogeneous part of equation (8) also satisfies the "full' wave equation

(V® + w?/2v®u = 0, as long as operator A is independent of z.

At the discretization stage of the implementation of equation (3), the velocity model
can be assumed to be piecewise constant on a rectangular grid in the (z,z) plane. See fig-
ure 1. The one-way operator (3) can be used to downward continue through each layer of
thickness Az, backscattered energy not being a concern. When a level is reached where
the velocity jumps in z, reflections and transmissions may, however, become significant. At

this level, boundary conditions applicable to the full wave equation must be applied.
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FIG. 1. A piecewise~-constant velocity v(x,z).

In an acoustic case the wavefield u is a pressure field. The boundary conditions it must

satisfy are
u; +u, = u; (5)
e 2
where
u; = downgoing incident wavefield
u, = upgoing reflected or backscattered wavefield

u, = downgoing transmitted or forward scattered wavefield

Because u, must satisfy an upgoing one-way equation (equation (3)),

66"; = +iA,u, (7)
and by combining equations (6) and (7),
A, —Au, = A, (8)
or, from equation (5),
(A, + Alu, = (A; — Ay, ' (9)
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Velocity A Wave Equation

Upper Medium 1 vi(z) A, =V /vE +8,,

92 = —iAu

Lower Medium 2 vy(z) A, = VeoP/vE + 08, Ou
Oz

—iAzu

FIG. 2. Appropriate operators for an upper and lower medium.

where the subscripts 1 and 2 refer respectively to the upper and lower medium (figure 2).
Just as the continuation equations (3) and (7) may be approximated by various methods, so
may equation (9). In ideal conditions, a backscattered wavefield u, arises from the
iluminating wavefield u; upon encountering the velocity contrasts v,;(z) and v,(z). If the
velocity is independent of z, equation (9) vields the standard plane-wave reflection coeffi-
cients; A may then be diagonalized by a Fourier transform, and its eigenvalues (without spe-

cial side boundary conditions) are given by

wz 1/2
M= T—kf]
v
so that
Ad1 — Mz
= e—u.(k
urka) = 5 TR, k)

As the wavefield is propagated downward, backscattered energy may be saved for a subse-
quent upward continuation sweep, and previously-saved backscattered energy may be
added in. in this way any order of multiple can be generated, as in a standard reflectivity

approach to layered earth modeling (Kennett, 1983).

For pre-critical waves, a suitable approximation to the square root operator A in (9) is

the 45-degree approximation

1+ 3 vE0m
A=z > (10)

v 1 1 V0,

4 2

Performing a standard finite-difference of equation (8) in z, with the above 45-degree
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approximation for A, yields a pentadiagonal system of equations to solve at each new level
in z; this system is barely more expensive to solve than the finite differencing of equations
(3) or (7). However, one shortcoming of this approximation of A is its mishandling of
evanescent energy: such an approximation is expected to give valid reflection coefficients
only for pre-critical angles. Post-critical reflection strengths must be handled by some other

method; it is not clear at the moment what this method may be.

Other approaches to the solutions of equation (9) are possible. If the geometry of the
velocity model is simple, an eigenvalue decomposition of A may be attempted; this process
would yield the normal modes of (9), which can be independently propagated. Or, an aver-
aged A may replace A; + A, if velocity contrasts happen to be small. In any case, by making
a discrete approximation to equation (9), backscattered energy with the proper relative
amplitudes may be computed with about as much effort as that required by a standard

reflectivity approach to modeling.
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