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Looking at Wave Equations in Amplitude - Phase Coordinates

Joe Dellsnger

Introduction

Many of the characteristic properties of various wave equations become clearer if the
equations are expressed in amplitude-phase coordinates. These coordinates are instructive
and make a good device for making clear what the one-way equations really do.

Amplitude-Phase Coordinates

For example, take the one-way wave equation (in retarded coordinates):
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Substitute in Ae*® for Q. Dividing through by the factor e'® which appears in every term,

you get
A ¢ w v2k?2

5: Tl A= TV

Now we get to the interesting part. Since A and ¢ are both real, we can pull this equation

JA.

apart into its imaginary and real components, which must each be independently and
simultaneously satisfied. Doing this (assuming for the moment that the square root is

real), and again dividing through by factors appearing in every term, we get:

%‘3_ -0 Real part
and
9 2k2
B_q: = _%(1 —1/1- vwzz ). Imaginary part
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Dellinger 236 Amplitude-Phase Coordinates

Both of these terms are interesting. The first states the well known fact that diffraction
is an all-pass filter. Diffraction only produces phase shifts, no attenuation. The second
term is a bit harder to understand. For a plane wave travelling at an angle 8 to straight

down, !:"f is sin 8. Viewing our wave field as a sum of plane waves, we can rewrite the

% _ —-‘:-(1 — V1 -sin®9).

phase shifting equation as

0z
Using the most basic trigonometric identity in existence, this becomes
a9 w
— = ——(1 — |cosf}).
22 = 21 |cosd])

Discarding the absolute value brackets would change this to the two-way wave equation.
Notice that the cos 8 is simply taking the downgoing component of the wave. Since we are
using retarded coordinates, which “ride along” with a wave going straight down (8 = 0),
there is no phase shifting at all in this case.

The most important thing to notice about this equation is that for a given plane wave
component, it is a simple phase shift of the form constant times w. From the shift theorem
of fourier transforms, this is seen to just be equivalent to a time shift proportional to the
constant. Thus for a plane wave component, a depth extrapolation is equivalent to a time
delay. In plain English, it takes a while for the plane wave passing you to be seen further
down. The cosf accounts for the fact that it takes longer if the wave is using some of
its velocity to move to the side as well. Only the downgoing component counts. The v
term accounts for the velocity of the wave; a slower wave takes longer to travel the same
distance. Viewed this way, our knowledge of how waves physically propagate is shown to

be very simply represented in the wave equation.

Earlier we passed over the possibility that the square root was imaginary; the resulting
equations applied only to real waves. If the root were instead imaginary (evanescent waves),

the equation’s real and imaginary parts would instead turn out to be:

2 1.2
?3_*:=_%( %_1),4 Real Part
and
s}
a_q: = _‘-:-, Imaginary Part

These two equations spell out the familiar properties of evanescent waves quite clearly.
The amplitude equation describes a wave decaying exponentially with depth. From Snell’s
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law, as v changes, the direction of propagation 6 changes so that the quantity %’- = 5-13-@
is a constant over the life of any plane wave. Thus, regarding %‘ as a constant, we can see
how the attenuation varies with w and v.

For a given wave, higher frequencies decay more quickly than lower ones. This con-
forms to our expectation that there should be a constant attenuation per cycle. For any
wave, as we increase v eventually the wave will cross the boundary into evanescent behav-
ior. As v increases past this point, the wave decays more and more rapidly with depth.
However, the rate of decay is not a linear function of v but rather increases toward a finite
limit as v grows large.

The phase equation is less complicated. It merely shows that the wave propagates
downward as fast as a real wave would that was going straight down.

We now turn our attention Muir’s approximate one-way equations in amplitude-phase
coordinates.

Paraxial Equations in Amplitude-Phase Coordinates

As we would expect, Muir’s approximations again lead us to equations of the form

04 _,
0z

and

W

¥

~F(6).

We can now summarize in a table F(8) for various wave equations:

F(0) for Various Wave Equations
Two-Way 1—cosd
5° 0

.2
o sin” §
15 2
. 3
sin” @
45°
sin” 9
2
One-Way 1—|cos6|
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Viewed in this way, Muir’s expansion is attempting to approximate cos z using sin z.
cosz is even, whereas sin z is odd, so the sine is squared to make it even. In the limit,

the fit is perfect over the range —90° to +90°. Outside of this range, sin?

z can not hope
to fit cos z; but this is fine, because for a one-way equation we really wanted to fit | cos |
anyway!

The so-called 5°, 15°, 45°, etc..., equations are called such because in some sort of
vague qualitative way this is the maximum angle of wave propagation they effectively
handle. However, when they are dissected numerically they never seem to deserve their
names. F'() is yet another parameter describing their behavior. It would seem that a

polar plot would be appropriate:

FIG. 1. A plot of —F(0) for the two-way wave equation, the one-way wave
equation, and Muir’s 5°, 15°, 45°, 65°, and 80° approximations to the one-way
equation. @ is zero pointing down.

Retarded coordinates produce a bizarre looking graph, so we have drawn the plot for
regular coordinates. This is done by merely subtracting 1 from the values of F(8) given in
the table. Then, to make it positive, we have plotted —F'.
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The two-way wave equation is represented by the bold circle in the lower half of the
graph. As 0 sweeps through 360°, this circle is traversed twice. The one-way wave equation
graphs as two circles, the lower bold one and its mirror image above it. Muir’s various
approximations give the various outer curves. The 5° equation plots as the outer circle.
It is a very poor approximation to the one-way equation for any but very small angles.
The 15° equation plots as a slightly pinched ellipse. Continuing inward, we see the graph
for the 45°, 65°, and 80° equations. Lines with slopes of 5, 15, 45, 65, and 80 degrees
have been plotted to show the angles to which we should expect the various approximate
equations to still be a good approximation to the one-way equation. Surprisingly, except
for the 15°, the various equations seem to deserve their names. Perhaps this means that
errors in F'(6) are the determining factor as to whether an equation is considered “good” at
an angle 8 by a person’s eye? This still wouldn’t explain why the 15° equation is a special
case, though. Perhaps the fact that it is an odd order approximation has something to do
with this, since all of the others are even. This is supported by the fact that the next odd
order approximation, the 50° equation, (not shown), also seems to be seriously underrated
in a similar way.

If F is a natural parameter to approximate, it may make sense to try some other
expansion of F'. Since we are looking at circular functions, a Fourier series seems like a
reasonable sort of thing to try. On the interval —x to #, this would entail an expansion
of cos% in terms of cosd. This would then have to be converted into an expansion in
sin? 8. This expansion, however, would not fit F well for § = 0, which should be where
the fit is best. An additional constraint could be added to force this. Whereas a Taylor’s
expansion extrapolates a function based on local behavior near a point, such an expansion
would approximate the function globally. This could be the subject of more research in
the future.

Dip Filtering Using a Modified 45° Equation

In the 45° equation,

substitute in for the w on the right hand side of the equation w,, where w, will be allowed
to be complex. Change variables to Q = Ae*®, as before. Then we get

24,2 2,2 2
6A+.A?_£_kxv aA_.Akzv 8_¢____3.Aﬂ.

Bz ' dz  4w? 9z ' 4w? 9z 20y
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The real part of this gives

dA vk?
-;9_;= —-Im(w*)A 2 = FEPrING
2jws[["(1 - Fo7)

If ||ws]|* ~ w?, then this represents dip filtering.
The imaginary part gives (after factoring out an A from all terms)

k3v? 3¢  vkIRe(ws)

(l 402 )62 - 2”(4)*”2 ¢

For there to be no phase errors, we require that

Im(w,) is fixed by how much attenuation you want. So we must pick Re(ws) to suit. It is

easily found that we want

W+ \/w? — 4Im(w,)?

2

Re(ws) =

There is a limit to how large the imaginary part of w, can be for this equation to still
have a solution. Unfortunately, to produce significant dip filtering requires the imaginary
part of wy to be outside the acceptable range. If the problem is just ignored and Re{w,)
is left equal to w, significant phase errors result. An example of this is shown in figure
2. On the left is the impulse response of the original 45° equation. On the right is the
impulse response of the “dip filtering” 45° equation. The units are not important here.
What is important is that the vertical and horizontal scales are the same and that in the
right hand plot significant amounts of energy can be seen to have been neither attenuated
away nor migrated properly.

The solution would seem to be to not do dip filtering in this way. A dip-filtering
equation could be run alternately with the 45° equation, for example. One promising
candidate is

—-— = —¢

dz
Writing this equation in amplitude-phase coordinates shows that this equation should

9Q (k:)" ~ sin 60)2Q.

select for waves propagating at an angle 6, to the vertical. Implementing this requires
solving a pentadiagonal system of matrices, however, unless 8, = 0. This is a significant
increase in time over using the modified 45° equation alone.
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FIG. 2. Impulse responses for the 45° equation (left) and the modified 45° dip-
filtering equation (right). The semicircular impulse response has been distorted
into an ellipse, and there is also a great deal of “ringing” as well.
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Conclusion

Amplitude - phase coordinates are a more natural way of writing wave equations,

making their important properties show very clearly. They also are a good way to design
new equations as well.
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w B};a narrow mﬁrgiﬂ,’ America’s -ééllege
presidents more often include Stanford

,than Harvard among the nation’s best upi~~-
versities for undergraduate education, a’

new survey shows. S S

But Harvard continues to enroll a high-
er proportion of students offered admis-
sion -as freshmen than does Stanford,

h which has ranked second nationally in this.

-zespect for several years among major pri-
vate universities.

sesurvey was conducted by U.S. News

242

d as top us

(;m; Warl@Repor; inégazine, drawing ré-

_spemses from 662 of 1,308 four-year col-

lege and university presidents. Each’ was
asked to pick the five best undergraduate
schools from a list of instittitions most simi-
lar to their own in enrollment and range of
programs. . ‘
Among national universities, Stanford

was included in the top five by 48.8 per-
“cent of the respondents, with Harvard

mentioned by 47.6 pergent.. - . -
 Yilefollowed with 37.8 gieropnt, Prince-

-risen spectacularly.

the Stanford staffer fé)

ton with 28.0 percent, and the University
of California with 24.4 percent, the high-
est of any public institution. -

Annual surveys by Stanford have shown

- that roughly one third of those offered

admission but not enrolling as freshmen
attend Harvard, Yale, Princeton, or MIT,
which ranked 10th in the survey. Berkeley
is the most. popular. choice among those

~ admitted to Stanfétd who attend public .

universities. - :
Al six of these-institutions ranked very
Bighly in a recent national comparison of
pglgate faculties by their peers across the

CcOot , 5 ., -
. ssBmrhkeley, Stanford, and Harvard had
~ the largest number of dcademic depart-

ments among the top 10 in their respective
fields. MIT, Yale, and Princeton did well
in the smaller number of disciplines in
which they offer graduate programs. .
~ Stanford makes no distinction between
faculty who teach graduates and under-
graduates. University President Donald
Kennedy has frequently noted that strong
research and teaching often are found in
the same individual faculty memibers.

In 1957 a national survey by the Uni-
versity of Pennsylvania rinked Stanford
13thin overall quality of its graduate prog-
rams. By 1966, the University was among .
the top six, and in 1969 among the top
three. _ B

In its Nov. 28 issue, U.S. News and World
Report noted that “David Riesman, emer-
itus professor of social science at Harvard,
is among educators who were not sur-
prised by the. strong (undergraduate)
showing of Stanford. ... -

___“Calling the university ‘a meteor in the

business,’” Riesman says a combination of

‘excellent leadership, attractive climate,

and the addition of many respected faculty
members from Eastern colleges, including

. Harvard, have bolstered its reputation as a

first-rate undergraduate school. ‘It has

(Rl 1] -

Several years ago, Riesman told a Stan-
tord reporter-that the University should

“stop trying so hard, that it “really wasn’t

the Avis of the West.” :
“That’s easy o sa).mle yosive Herie,”



