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The Pre-Stack Migration Operators.

Yves Dezard

ABSTRACT

We describe different schemes for the pre-stack migration of profiles in (§-G) space
and for an inhomogeneous medium. The central part of the downward continuation analysis is
the description of each method including derivation, dispersion relation, stability and applica-
ble numerical algorithms. In this paper, we present two downward continuation operators.
Several analytical and numerical examples are given to illustrate them. The Raphson-Newton
and Muir's expansion of the square-root operator are compared for relative error phase
velocity and error group velocity . Since the pre-stack migration of profiles in the Cartesian
coordinate system has been analysed in detail by Jacobs (SEP-34) , we will restrict our-

selves to the essentials .

Introduction

Snyder (SEP-16) has shown that lateral velocity variations and steeply dipping beds
invalidate the standard industry assumption that a zero-offset section is identical to a CDP
stack. Finite difference operators have been designed to handle both lateral velocity gra-
dients and complex structures. As described by Jacobs (SEP-34), the Cartesian coordinate
extrapolation downward continues both the upgoing wave recorded at the geophones of a
profile, and a downgoing wave originating at the shot point using either the principle of

reciprocity, or by modeling a source.

Energy migrates towards the zero-offset trace so that the migration of the unstacked
data results in the imaging of reflectors on the zero-offset traces. The stack appears as
one takes the sum of the frequency domain quotients of the upgoing wave over the downgo-
ing wave . The imaging deteriorates as the phase velocity error increases since the accu-
racy of the imaging depends upon the correct determination of where the up- and down-

going waves are in phase.
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Another point concerns the group velocity error which can be viewed as a measure of
the energy dispersion. This dispersion is highly undesirable for two main reasons: First, the
imaging may be altered since dispersed energy can interfere with constructive energy.
Second, energy dispersion may give rise to errors in the wave equation residual velocity
analysis since this processing is done concurrently with the downward continuation of the

pressure deviation wavefield.

We study first the downward continuation of the up and down-going waves and review
the 4 approximations usually used to derive the extrapolation operators. Later we will study
the derivation of the operators. The first operator has been previously designed by Claer-
bout , Muir and Jacobs. Stability properties are demonstrated using the eigenvalues of the
tridiagonal matrix 7. The second operator has been designed for its higher accuracy than

the first one and the simpie algorithm it leads to.

The One~-Way Wave Equation In The (x,z,w) Domain

We assume that the density model is a constant. Clayton (SEP-27) has shown that the
density variations modify the amplitudes of the wavefield but not the phase, so that the

imaging is not affected by this approximation.

The two-way wave equation for a pressure deviation wavefield ¥(z,z,w) in a medium

with acoustic velocity v (x,z) is:

Py, Py _ _ _w?
dz? * Bz? v(z,z)? v M

This equation can be factorized in order to get the two one-way wave equations which

are used to continue either up or down-going waves.

b _ w v: 8% ey (0, iw v? % L2y -
(Bz v 1+w2 62:2] )(Bz * U [1+'w2 62:2] Yy=0 (2)

The first term of equation (2) is the one-way wave equation which allows one to con-

tinue up-going wave downwards in depth.

9_’50__"3&[1+i62 Y%y = 0 (3)

oz v ? gz

Formally, we can solve equation (3), i.e. find the pressure wave at depth z +Az by the

following relation:
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z+Az iw vg 62
Wz,z+Az,w) =exp| [ =[1+ w—az—z]vqu dz (4)

2
z
in order to simplify the downward continuation of the up-going waves, 4 approximations
are usually done. The first of them concerns the argument of the exponential and we simplify

this argument with the following:

z+bz GNP ; 2 52
iw v 9 Py tw v 0 y,
_{ "’_[1+_2—6z_2]1 Wdz'&i_’v——[1+—2'ax—z]lz¢ Az (5)

This first assumption requires that the variations of ¥(z,z,w) in the interval [z,2 +Az]
be negligible, i.e. the wave length along the depth axis should be much greater than Az. This
is the requirement not to have aliasing in the z axis direction. It ieads to the following condi-

tion:

v

Az « ZHW

(6)

Here, @is the angle a wave vector makes with the z axis.

The second assumption is the approximation of the square-root operator

2 2
[1+ 3—2——66—2]“2 by a finite continued fraction using either Muir's or the Raphson-
w x

Newton expansion:
wR B8R w? B8R

1+ — Ve =R
[ w? 6.7:2] ('w2 Bx?

) (7)

Where R represents a finite continued fraction. This approximation of the square root
operator as a finite rational fraction expansion is the key to derive the extrapolation opera-

tors. The third approximation concerns the evaluation of the second partial continuous
62
dzx?

derivative by Claerbout's g trick:

_ 1 T
Sze = Az® 1 -8T (8)

Following Jacobs, the parameter § may be considered as a function of w since you
2

want to fit 3
oz

to the largest k, for which propagation will occur at the frequency w. The

fourth approximation is the expansion of the exponential in the equation (4). Let's consider
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consider the second order finite rational fraction expansion of the exponential:

exp(z) = (9)
1+z/2

If we replace £ by the operator AzEa——, then we find the following Crank-Nicholson
z

scheme:

1
Azl

0z

1 0
1+ -Z—Azaz

Y(z,z+Az w) = Wz ,z,w) (10)

1 -

Usually, the first order of the Taylor series expansion is simply considered and the
other terms of the exponential series are neglected. The Crank-Nicholson scheme leads to a
stable operator (OF,), accurate to third order terms in Az, the discretization parameter for
the depth axis. In this paper we consider the third order of the Taylor expansion of the

exponential in the equation (4) to derive a new operator (0F;).

Derivation, stability and accuracy of the operators

We define the matrix T as the positive definite tridiagonal matrix arising from the
second order discretization of §.,. Some stability results may be derived by considering the
eigenvalues of this matrix. The eigenvalues A of this matrix are solution of the following

equation:

det(\[, —T) = O (11)

where n is the number of receivers to downward extrapolate. Let us define D(n) as the

determinant of the matrix A/, — 7, and the parameter u by the following relation:

U = A=2 (12)
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If we develop the determinant D(n ) by rows, it leads to the difference relation:

D(n) =u D(n-1) - D(n-2) (138)

If we define the angle « as:

u = 2cos(a) (13a)
Then, it can be shown that:
D(n) = W—+1)a (14)
sina
Therefore the eigenvalues A\, of the matrix 7 are given by the following relation:
kn
)\k = 2[1 +cos(m)] 1<k<n (15)
Thus, we can write the T matrix as:
T = 0AN) O (16)

where 0O is an orthonormal matrix and A()\,) a diagonal matrix whose coefficients are the
eigenvalues of the matrix 7. Let us define Q(z,w) as the data set vector to be extrapo-

lated:

w(z,,2 ,'w)1

'!//(Zz,z ,'!U)

@(z,w) = (17

w(zn;z W)
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@(z,w) may be considered either as a common shot point gather vector or a common
receiver gather where n is the number of receivers. The simplest operator (OP) which can

be derived by a first order Taylor expansion of the exponential in equation (4) is:

- 9
(OP) = In + bz (18)

Using equation (16), we may write the square root operator defined in equation (7) in a

similar decomposition:

144 T
wlAz® 1-8T

u? Ak
RAzR 1 — BN

[[n__ ]1/2 - OA[(1__w )1/2]0t (19)

For convenience, this relation has been derived in the case of no lateral velocity varia-
tions since the matrix O and the diagonal velocity matrix ¥ commute in this case, and this
allows the square-root operator to be computed easely. The goal is to write the operator
(OP) in a similar form to the matrix 7 in equation (16). Then we will be able to discuss its
stability in the Von Neuman sense. Using the equations (3) and (19), we may write the

operator (OP) in the following form:

MZ_( vP Ak Y1727 ot

P) = 14 1 - 20
(0P) = 0 A T aeT T (20)
The above relation shows that the operator (OP) has n eigenvalues vy, given by:
. 2 A
vy =14 B2 g U E_y/2 q<k=n (21)

v w? Az? 1 =N,

The Von Neuman stability criterion of the operator (OF) requires that |y, | be less

than 1. Therefore, it yields:

] m
w n+l

(22)

SEP-38



Dezard 221 : Migration operalors

Derivation of the operator (0OF,;)

The condition (22) leads to very small value of Az ( a few decimeters for usual seismic
velocity and frequency ). Another point is the weak accuracy of this operator. This is why a
Crank-Nicholson scheme is used, providing both stability and accuracy. Following the equa-
tion (10), this scheme may be viewed as the second order finite rational fraction expansion

of the exponential, leading to the operator (OPI):

I,
(0oP,) = L 5 (23)
Az —
9z
I, -
Lo+ 2pp B
n 2 z

The eigenvalues g, of this operator may be directly calculated as for the operator

(OP) if the velocity has no lateral variations. Their values are:

1+ iw Az (1 — z'u2 _ Ak )1/
2 1-A
e = w” Az k 1<k<n (24)
1 — M“ _ P M iz
2 w? Az? 1 — N

Since yu; always has a modulus lower than 1, the operator is unconditionally stable in
the Von Neuman sense. An estimate of the accuracy may be provided by a Taylor series

expansion of @(z) which leads to:

3
| @z,w) - (0P) @z —Az) | = ——Az8 || 22|, (25)
12 9z3
where ||.| | is the infinite norm on the interval [ z —Az,z]. In the case of a plane wave

travelling with an angle 8 to the depth axis 2, this leads to:

1w A2°

| @(z,w) — (OP)) @(z—-Az,w) | < 12 o0 |sin(6) |3 @(z —Az,w)B (286)
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This estimate is somehow pessimistic since it always exceeds the error. However, it

provides an approximation of the numerical dispersion. Furthermore, the previous inequality

shows how the accuracy depends upon the value sz'w’ the expression already encoun-

tered in the non-aliasing condition. For a monochromatic plane wave travelling in a medium of
velocity 2400m / s, with an angle of 45 degrees and a frequency of 30 hertz, it leads to a
relative error of 0.4% for a discretization parameter Az of 10 meters and one downward
extrapolation. If we extrapolate, say up to 1000 meters, the relative error is about 40%.
This estimate of the numerical dispersion may seem quite pessimistic, but we must realize
that the splitting technique used for the downward extrapolation reduce the accuracy of our

scheme to second order in Az.

Derivation of the operator (0P,

The second operator (OP,) we describe now, leads to an exact splitting algorithm and
the strategy is accurate to fourth order in Az. This operator is the third order Taylor expan-
sion of the exponential.

8 AzR 8% A3 B8

+ + (27)

(Opz) = .[" + AZ az > 622 6 623

This operator may be factorized and it leads to:

8 d d
(OPg) = 6[,,(AZE;—aa)(Aza—é——az)(AzaT—al) (28)

In the appendix, we demonstrate that the stability of this operator requires:

Az = (1 —-48)Y7 Ax (29)

Since the parameter § is taken in the interval [1/ 12,1/ 8], the above criteria is easy
to handle and does not require small Az. Also, the accuracy is improved by almost an order of
magnitude. As for the operator (OP,), an estimate of the accuracy may be provided by a

Taylor series expansion and it leads to:

4
| 9(z,w) — (OP)@(z —Azw) | < ~2—1£—-Az4 I gz—fnw (30)
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This equation may be viewed as a control of the accuracy. For the same monochromatic
plane wave used to estimate the accuracy of the operator (0OF;), the new operator pro-

vides a relative error less than 0.06%.

Jacobs has described the downward continuation algorithm with the operator derived
from the Crank-Nicholson scheme. His technique is to approximate the square-root operator
by its partial fraction expansion and to plug it into the operator (0OP,). Then, he needs the
Ma splitting to derive a useful procedure. Ma strategy is to solve each z-step as a
sequence of 45-degree split equations. Thus, the algorithm is accurate to second order in
Az. The operator (OF;) does not need to split the square-root expansion in its component

pieces so that the accuracy to fourth order in Az is not destroyed.

As shown by Jacobs, Muir's partial fraction expansion of the square-root may be writ-

ten as a sum of 45- degree operators:
2 g® k
R(i‘é"'é;‘;’) = 2 'I'j(k) (31)

where Ty *) s a 45-degree operator and k the order of the Muir's expansion used. We then

plug the previous expression in equation (28) and it yields:

I
(0P;) = -é‘—(oz)s) (op2) (op,) (32.a)
where the operators (op;) are defined by:

i k
(Op-,;) = Ju;i.zl'rj(k) — 0y (32.b)
J=

Thus, we may extrapolate @(z,w) to the depth z +A2 by the sequence of both shift-

ing and focusing equations:

@, = (op;) Q(z,w) (33.a)
Qe = (opg) @, (33.b)

In
Q(z +Az) = —6—(0p3) Q2 (33.0)

where @(z +Az ,w) is the output wavefield at depth z +Az and the subscripted @'s are vec-
tors used in implementing the procedure. An algebraic matrix manipulation shows that we may

write each 45-degree operator T; *) in the reduced form:

M (k)

k) = o, (k) p %
s = Xy +
i )

(34)
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All the parameters encountered in the right side of the previous equation are diagonal
matrices except the tridiagonal matrix T,-_("). Thus, the main work is to solve tridiagonal linear
systems. Accuracy and stability of the above operators ( (op;) , (OP,) and (OP;) ) greatly

depend upon the approximation of the square-root operator that one uses.

Expansion of the square-root operator and dispersion relation

The approximation of the square-root operator by either Muir's or the Raphson-Newton
expansion leads to wave extrapolators which are not frequency dispersive but angle disper-
sive. Since Raphson-Newton converges quadratically to the square-root, it provides higher-

order approximations. Raphson-Newton recursion is defined by:

RkN F
Rk+1N = > + 2RkN (353)
F=14+8 (35b)
_ ,Uz 62
S = w? z? (86c)

Following Dubrulle, it may be shown that RIN coincides to the 15-degree approximation
of Muir's expansion and RzN with the third approximation. Raphson-Newton approximations
of the square-root are never used for two reasons. First, no stability proof may be given
easily and second, for each Raphson-Newton iteration, the equivalent (in computation cost)

Muir approximation is more accurate.

Claerbout shows (Imaging the Earth's Interior) that the dispersion equation arising from
the extrapolation operators is not frequency dispersive but angle dispersive. The true

dispersion equation is:
- w 2 1/2
k, = - [ 1 —cos*(6O) ] (36)

2
2?

If we assume that Claerbout's approximation of (i.e. the g trick) is correct (things

are worse), then a Fourier transform over x shows that the parameter S used in Muir

approximation is sin®( ). Thus, we may write the above equation as:
w .
k, = - £ (sin?( &) (37)

where the function f represents either Muir or Raphson-Newton approximation of the
square-root. Therefore, both the phase velocity and the group velocity presents an angle

error. It is easy to derive the relative error of the wavenumber k,. We denote it by g ().
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FIG. 1. Relative error of the wavenumber k,. The curves have been drawn for positive
degree angles since g is an even function of the angle . The 65 degree approximation is
much more accurate than the 45, and Muir's 6** approximation to the square-root is signifi-

cantly better than the 65.

f(8) —cos(6O) (38)

g(0) = cos(6)

These relative errors are represented by the curves of fig. 1, for the 45 degree, 65
degree, 6% and 8! Muir approximations and for the third Raphson-Newton approximation. It
shows us first that it is of weak interest to use higher approximation orders than the 6t
Muir approximation. Second, 8% Muir approximation is better than third Raphson-Newton

ones for the same computation cost since both of them require the inversion of 4 partial

fractions.
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Derivation of the group velocity vector

Following Claerbout (FGDP p. 16), we derive the group velocity vector Vg from an impli-

cit equation ((w,k k) = O by the following relation:

Ve 0
= - 39
dw
A simple implicit function ()} may be defined as:
w v
Nw,kz,k,) = k, — v—f(;;kz) (40)

where the function f is the approximation of the square-root (equation (37) ). The definition

of the group velocity, equation (88) and the definition of (), equation (40) yields:

V, = v [f'(%e - e ] (41)
§ vk, f,('uk,)__f('uk,) w T F
w w w

where f' denotes the first derivative of the function f and the vectors e,, e, an orthonor-

vk,

mal basis of the vertical plane (X-Z). Let's now replace the expression by sin(8) in

equation (40) in order to derive the parametric equations of the group velocity vector.

The evanescent waves may be characterized by an imaginary complex angle 8. Thus,
instead of parametrized the group velocity components V, and V, by the parameter sin (),
we must use a parameter u whose interval of variations is [ —=,»]. When |u | is greater
than 1, we are in the evanescent wave domain and this waves don't propagate but are

responsible of the familiar tails behind the impulse response of the migration operators.

Figure 2.a shows the group velocity parametric curve for the so-called 45 degree
approximation of the square-root inscribed within the semi-circle which is the exact
parametric curve of the group velocity vector. As described by Claerbout (Imaging the
Earth's Interior, chapter 4.2), the evanescent waves are above the semi-circles which indi-
cate waves with |u| = 1, i.e. waves propagating in the x direction. Things are worse than
for the phase velocity approximation or for the wavenumber approximation k, ( Figure 1.)
since the wavefront drastically diverges from the correct group velocity parametric curve
for small angles. The impulse response of the operator (OP,) for the 45 degree approxima-
tion ( Figure 2.b) in a medium with constant velocity presents exactly the same wavefront
and we may notice that the dispersion waves occur as predicted by the theoretical group

velocity parametric curve.
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FIG. 2. (a) Theoretical wavefront for the Muir 45 degree approximation. The impulse
responses of the 45 and 65 degree Muir expansion, respectively Figure (b) and (d) have
been generated by the downward continuation of a spike (frequency domain [154, , 404D

with 8 = -;—, then filtered both in the x and z directions by a cosine Hanning window.

Burg's extrapolation technique has been implemented for the side boundary conditions. Fig-
ure (c) is the theoretical wavefront for the Muir 65 degree approximation.
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—0.5 9 065

FIG. 8. Group velocity parametric curve for third order Raphson-Newton approximation.

The 65 degree approximation of the square-root leads to a noticeable insight of the
convergence towards the semi-circle as shown by Figure 2c and the impulse response of the
operator (OPl_) for the 65 degree approximation ( Figure 2d) still presents the same wave-

front and the anisotropic dispersion for large angles as predicted by the theory.

Figure 3. displays the group velocity parametric curve for the third order Raphson-
Newton approximation. This operator handles well dips up to 80 degrees. Its numerical imple-
mentation leads to the inversion of four three tridiagonal matrices at each downward con-
tinuation step. Muir's 6% approximation has the same accuracy than the previous operator
(Figure 1) for angles up to 80 degrees. Since it requires the inversion of three tridiagonal

matrices at each step, it is the highest operator of interest for our seismic data processing.

Impulse response in severe velocity variation medium

The grid dimensions used in generating these impuise responses have 128 traces both
in the x and in the z directions, with a sample interval of 18 meters in the x and 8 meters in
the z direction. 45 and 65 degree ( OP,) impulse responses are displayed in Fig. 4, 5 and 6

for three different velocity models.

Fig. 4 (b) and (c) show 45 and 65 degree impulse responses for a simple fault model

(a). The wavefronts are no longer semi-circles because there are both depth and lateral

SEP-38



Dezard 229 Migration operalors

2000 m/s
S0U0 m7s . 3000 m/s
4000 m/s
(a)
45 DEGREE OPERATOR (OP1) 65 DECREE OPERATOR (OP1)
X X
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FIG. 4. (a) The velocity model. (b} 45 and (c) 65 degree (OP,) impulse responses. These
were generated by the same input as used for figure 2.
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3000 m/s
2000 m/s
3500 m/s
(a)
45 DEGREE OPERATOR (OP1) 65 DEGREE OPERATOR (OP1)
X X
40 e0 80 100 40 60 80 100
o o
8 8
N |
3 81
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FIG. 5. (a) The velocity model. The impulse responses (b) and (¢c) have been split into two
wavefronts since waves propagate at different velocities in different parts of the medium.
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1800 m/s
2400 m/s 4000 m/s 2400 m/s
(a)
45 DEGREE OPERATOR (0OP1) 65 DEGREE OPERATOR (OP1)
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40 60 80 40 60 80
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& 3
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FIG. 6. (a) The velocity model. The impulse responses (b) and (c) no longuer have curvature.
All the energy seems to propagate in the narrow salt dome model whose velocity is

4000m/s.
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velocity variations.

Fig. 5 (b) and (c) display 45 and 65 degree impulse responses in a medium with both a
severe lateral and depth velocity variation media, shown in (a). The impulse responses for
both the 45 and 65 have split into two wavefronts along the vertical fault and these wave-
fronts have different curvatures since they have propagated at different velocities. The

behaviors of the 45 and 65 degree impulse responses are significantly different.

Fig. 6 (b) and (c) show 45 and 65 degree impulse responses in a media representing a
salt dome model, shown in (a). The wavefronts no longer curved and the energy is trapped in

the narrow salt dome.

These three examples show that higher operators than 45 degree ((0F,;) must be used
for downward extrapolation in a medium with complex tectonics. Muir's (65) degree approxi-
mation has a poor behavior for angles beyond 60 degrees. One must used the 80 degree

approximation in media with severe lateral velocity variations.

CONCLUSION

Ma's spitting technique and Muir's approximation of the square-root give an operator
(OFP,) which is always stable and whose accuracy is to second order in Az. Third order Tay-
lor series expansion and Muir's approximation of the square-root give an operator (OP,)
whose stability has been demonstrated for a homogeneous medium. It is accurate to fourth
order in Az. Muir's 45, 65 and 6% approximations of the square-root are the three square-
root operators of interest for seismic data processing. Muir's 6" approximation handle dips

up to 80 degrees well.

ACKNOWLEDGEMENTS

| wish to thank Joe Dellinger and John Fawcett for their careful reading of this article.

REFERENCES

Claerbout, Jon F., 1983, Imaging the earth's interior.

Claerbout, Jon F., 1976, Fundamentals of geophysical data processing, McGraw-Hill, New-
York.

Dubrulle, A., Numerical methods for the migration of constant-offset sections in homogeneous
and horizontally layered media, Geophysics, v.48, p.11956-1203.

Dubrulle, A., On numerical methods for migration in layered media, Geophysical Prospecting,
v.31, p.237-263.

Clayton, R., 1981, Wavefield inversion methods for refraction and reflection data: Ph.D

thesis, Stanford University.

SEP-38



Dezard 233 Migration operators

Jacobs, Allan, 1982, The pre-stack migration of profiles: Ph.D. thesis, Stanford University.

Muir, F. and Jacobs, B., 1981, Continued fraction for the square-root function: SEP-26,
p.183-195.

Muir, F. and Jacobs, B., 1981, High order migration operators for laterally homogeneous
Media: SEP-26, p.163-181.

Snyder, A., 1979, Common shot gather modeling and inversion: SEP-16, p.59-81.

APPENDIX

We derive the stability criterion of the operator (OF;) in a homogeneous medium. If we

define the parameter x to be:

whz v? Ae
= 1 — 1/2 A-1
v [ w?Az? 1 — 57\); ] ( )
Then, the eigenvalues of (OF;) are:
—1+'x—-—zi—-£ (A-2)
Tx 7 2 6
If the argument of the square-root in equation (4—2) is negative, then:
-1 3 2
Ve = 6—[ ~z3 + 32% — 6z + 6 ] (A-3)
The Von Neuman stability criterion |y, | <1 leads to:
wAz < 1 (A-4)
v 2

The above requirement has been already encountered in the non-aliasing condition,

equation (6).

If the argument of the square-root in equation (A-1) is negative, the modulus of v, is
defined by:

2 _ (1 X% 2 _z% N
7 |* = (1 2)+(x 6) (A-5)

Here, the Von Neuman stability criterion leads to:
Az < [1-481Y% Az (A-6)

where 3 is Claerbout "8 trick" parameter.
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