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Hexagonal finite difference operators and 3-d wave equation migration

Marta Woodward and Francis Musr

Introduction

The preceding paper demonstrated that regular hexagonal meshes are optimally ef-
ficient for sampling circularly bandlimited signals. In this paper it will be shown that
hexagonal difference operators corresponding to regular hexagonal sampling meshes are
similarly efficient for approximating circularly symmetric operators. Following are com-
parisons of square and hexagonal difference operator representations of the two-dimensional
space domain Laplacian (VZ)—speciﬁca,lly as they might appear in explicit and implicit
3-d migration schemes. The explicit operators are designed according to Taylor series
techniques described below and evaluated in the spatial frequency domain both on their
circularity and their match with the ideal operator. Stability considerations are reserved
for a later paper. All examples are worked on the square and hexagonal meshes illustrated
in Figure 1, related such that their respective bandregions encompass an inscribed, circular
region of radius 27/ \/gh. To facilitate comparison, the remainder of this paper assumes

the Nyquist frequency of interest to be the radius of this inscribed circle.
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FIG. 1. Square and hexagonal sampling meshes with comparable bandregions.
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Explicit schemes: 15 degree wave equation

Ignoring stability, successful explicit 3-d migration with the 15 degree paraxial wave
equation

(1)

depends upon the accuracy of the difference formula used in approximating 72. While
the two-dimensional Laplacian is usually represented as a sum of one-dimensional second
derivatives in two orthogonal directions

dz?  dy?’ (2)
it may more generally be represented as a summation of one-dimensional second derivatives
in any n symmetrically distributed directions

n

2 i
2 _ 2
v _n28$§2 (3)

t=1

(n > 2; see Appendix for proof). This continuous equation may be adapted to a discrete
form appropriate for generating difference equations in two steps. First, 92 /dz,? is replaced

with the series expansion

82 62 A$¢2 (54 A$£4 56
= - + — Ty (4)
6:6,'2 5352 12 (52:,'4 90 62:,'6

where 6% /62, and §*/6z;* correspond to the operators (z~4% — 2+ 24%) [Az;2 and
(2728% — 4,7A% 4 6 — 424% 4 ;24%5) [Ag;*| respectively (Mitchell, 1980). Second, n—
the number of identical, symmetrically distributed directions summed over—is recognized
as a fixed, mesh dependent parameter (Figure 2).
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FIG. 2. n symmetrically distributed directions characteristic of square and hexagonal
sampling meshes. '
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The resulting discrete Laplacian is the infinite operator

2 - (52 A:c~2 54 A:c-4 (56
2 [ i
v . _ + —_ 5
n zz; (§$i2 12 (521,‘4 90 (5232'6 ) ’ ( )

where n and Az, are characteristics of the relevant sampling lattice.

A. Leggy operators

Given the difficulty of convolving an infinite operator across sample space, finite, one-
dimensional second derivative operators are regularly designed by truncating the Taylor
series of equation (4). Application of this method to two dimensions yields the leggy, square
and hexagonal difference stars of Figures 4a, 4b and 4c—corresponding to truncations of
equation (5) at §2/6z,2 (accurate on the order of Ag;?), 6*/6x;* (accurate on the order
of Az;*) and §°/62,° (accurate on the order of Az;°), respectively. Shown along with the
difference stars are plots both of their Fourier transforms and of the relative differences

(errors) between their transforms and the true Laplacian of Figure 3.

Laplacian

FIG. 3. Frequency domain representation of the true Laplacian: k% + ky2.

Comparison of the figures yields two conclusions: first, as expected from their Taylor
series origins, the square and hexagonal operators imitate the true Laplacian comparably
well near the origin and comparably poorly near the circular Nyquist; second, the hexag-
onal operators are consistently more successful at approximating the Laplacian’s circular
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FIG. 4a. O (Azz) leggy square and hexagonal difference star approximations
of the Laplacian, their Fourier transforms, and the relative error between their
transforms and the true Laplacian of Figure 3. Relative error is contoured at
intervals of 10%, the Laplacian at intervals of (Nyquist)?/5. k, and k, range
from -Nyquist to Nyquist.
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FIG. 4b. O (A:c“) leggy square and hexagonal difference star approximations
of the Laplacian, their Fourier transforms, and the relative error between their
transforms and the true Laplacian of Figure 3. Relative error is contoured at
intervals of 10%, the Laplacian at intervals of (Nyquist)2/5. k, and k, range
from -Nyquist to Nyquist.
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FIG. 4¢c. O (Aze) leggy square and hexagonal difference star approximations
of the Laplacian, their Fourier transforms, and the relative error between their
transforms and the true Laplacian of Figure 3. Relative error is contoured at
intervals of 10%, the Laplacian at intervals of (Nyquist)?/5. k, and k, range
from -Nyquist to Nyquist.
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symmetry. While migration with any of the illustrated operators would be dispersive (the
larger the operator the less the dispersion), the hexagonal operators would treat energy
travelling in different directions most equally.

B. Compact operators

The preceding difference stars were designed through application of a one-dimensional
design rule of linear extension and truncation. In two dimensions a second rule becomes
possible—that of forming maximally compact, space-filling operators. In Figure 2 this
alternate rule corresponds to differencing along the dotted as well as the solid line direc-
tions; in equation (5) it corresponds to summing over m sets of n truncated, symmetrically
distributed, one-dimensional second derivatives. Because the method involves combining
distinct approximations of the Laplacian accurate to distinct orders of distinct Aw;’s, the
Taylor series accuracy of the composite operator can no longer be determined through
inspection of equation (5). Instead, each sampled point (u;) in a compact style operator
must be expressed as a Taylor series expansion around the central point (u0), and the
resulting set of linear equations combined to remove as many higher order terms in Az as
possible.

To illustrate the method, the expansions of the 5 and 7 point operators of Figure 4a to
the 9 and 13 point compact operators of Figure 5 are detailed below. First, the symmetry
of the desired 9 and 13 point patterns permits Taylor series expansion of a full ring of
points at a time: for the square, 9 point pattern (Az = V3h/2)

4
0%u  %u Azt /0%y 9tu
. — 4 A 2(Y = il A 6 6
;u; Uup + Az (ax2+ay2> 1,,0+ 12 (6z4+6y4) ,u0+O( 18) ()
8
a2u a2u Ax4 64u 68471, a4u
— g (07U  O7u o
gu; 4up +2Azx (82:2 + 8y2) v P (33:4 + 9220y° + 8y4) . + O(A=z%);

for the hexagonal 13 point pattern (Az = h)

6 2
3., (0% 0%u 3. 4,[0% d%u 6
E u; = 6up + 2Ax (62:2 + o) |, + 32A:c 3.z T 957 +0(Az®) (7)

t=1 do
12 2
9 v %u 27 0%u  d%u
— 8 Al | — 4+ — —Azt | — + — O(Az%).
Z;u, uo + 3 x(ax2+ay2) uo+32 z(6z2+3y2)u0+ (Az®)

Second, recognizing (8%u/dz® + 8%u/0y?) |, as the Laplacian, the equations are com-
bined to cancel out as many higher order terms as possible: for the 9 point operator no
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FIG. 5. Compact square O (Az?) and hexagonal O (Az?) difference star ap-
proximations of the Laplacian, their Fourier transforms, and the relative error

between their transforms and the true Laplacian

of Figure 3. Relative error is

contoured at intervals of 10%, the Laplacian at intervals of (Nyquist)? /5. k; and

ky range from -Nyquist to Nyquist.
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higher order terms can be eliminated

1 1¢ 2 2).
Az? (5; 5; '“—uo) =v* + O(Az®); (8)

for the 13 point operator, terms are cancelled through O(Az*)

Az? (“Z Z"z - —“0) =V’ +0(Az*). (9)

=7 1_.1
The coefficients for the sample points become the weights in the difference stars.

The examples show these compact operators require many more points to achieve the
same Taylor series accuracy as their leggy counterparts. The first compact, square mesh
pattern accurate to O (A:1:4) is the 8-direction, 17 point star of Figure 6 (Rosenbach, 1953);
the first compact hexagonal star accurate to O (A:cﬁ) requires more than 31 points. While
the square 17 point operator demonstrates greater circular symmetry than its 9 point
counterpart, the hexagonal 13 point compact operator is less circular than its leggy equal.
Unless characterized by greater stability, the space-filling method appears far less efficient
than the linear extension method in generating accurate difference formula approximations

to the Laplacian.

Explicit schemes: 45 degree wave equation

Circular symmetry arguments aside, the accuracy of explicit 3-d migration may also
be increased through use of a 45 degree wave equation. Among many other 45 degree

formule, a strict Taylor series expansion of the paraxial wave equation yields

P —iw 1 v g 1 v\’ 4
62N v 2(—iw)v 4(—iw) v (10)

Hidden within s7* is the cross term 64/837283/2. While this term may be represented on
any leggy, hexagonal mesh difference star, it can not be represented on any leggy, square
mesh star (contemplate equations (6) and (7) and/or the Appendix). The necessity of
abandoning the leggy pattern with a square operator suggests explicit, 45 degree wave

equation migration may be implemented most efficiently on a hexagonal sampling mesh.

Implicit schemes

Given the desirability of solving tridiagonal systems, implicit 3-d migration schemes

rely on splitting. For square meshes, a 2-way split, 1/6-trick, Crank-Nicolson formulation
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FIG. 6. O (Az*) compact 17 point square difference star approximation of the
Laplacian, its Fourier transform, and the relative error between its transform and
the true Laplacian of Figure 3. Relative error is contoured at intervals of 10%,
the Laplacian at intervals of (Nyquist)?/5. k, and k, range from —Nyquist to
Nyquist.
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of the 15 degree retarded time wave equation diffraction term involves sequential solution

of the relations

2
9Q Y 7 (11)
dz —2iw \ 1 + Az? &2

n dz?

62
~ _ o A 2 2
dz 2iw \ 1 + _y_n 'Lay2

(Clzerbout, 1984). Because the Laplacian may be represented as a summation of any n
symmetrically distributed, one-dimensional second derivatives, these relations have iden-

tical 3-way split, hexagonal analogues

2
6Q g v 5% ,2
32~ o (1+A_112.J2_ (12)

n 6.’512

52
a;Q_l ~y _3 v 6$22
dz —2iw \ 1 4 Aza? 482

n 6$22

2
QQ ~ -3 v dz32
0z —2iw 1+A1_33_§3_ )

n 6.’1722

While the prospect of migrating and imaging in three directions as opposed to two may be
disturbing, it must be remembered that hexagonal sampling requires 13.4% fewer samples
than its square counterpart (see preceding paper). Furthermore, the redundancy of the
nonorthogonal hexagonal axes may offer some yet to be determined advantages in dealing

with lateral inhomogeneity.

Conclusion

The near circular symmetry of hexagonal sampling meshes results in hexagonal finite
difference operators more successful than their square counterparts at approximating the
two-dimensional Laplacian—and consequently at approximating the 3-d paraxial wave
equation. Much work remains to be done to determine the extent of their advantages and
disadvantages in explicit and implicit migration schemes.

Appendix
Equation (3) will be proven in the frequency domain, where it becomes
2 —n :
K = ;; k2. (13)
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In words this relation implies that the squared distance of any point from the origin is equal
to 2/n times the sum of the squares of its projections along any n symmetrically distributed
(equally spaced) axes—a generalized form of the Pythagorean theorem. Considering a set
of n symmetrically distributed directions (the first direction oriented at some angle ¢ with

respect to the z axis) the right hand side of equation (12) becomes

2k?

= 2 ar
" cos ((b—}- - )
2k? [ 2 an
= Zcos ¢ cos> —+Zsm ¢ sin® ——2sm¢cos¢Zsm——cos—n—
a=0 o=0
ok [ 2 2 QAT . o . 2 QT
= oS ¢Z cos - + sin qbz_: sin m
2
= 2k cos ¢Z ( —cos2—) + sin? ¢Z (— — —cos2ﬂ)]
n 2 n
2
= % [-2- cos? ¢ + Esin2 qﬁ]
= k2. (14)
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