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Hexagonal Sampling

Marta Woodward and Francis Musr

Introduction

Two-dimensional geophysical surveys are traditionally implemented on rectangular
sampling lattices. While it has been known for some time that circularly bandlimited
signals are sampled 13.4% more efficiently by hexagonal lattices than by rectangular lat-
tices (Peterson and Middleton, 1962), only recently has it been shown that processing
algorithms for hexagonal systems are similarly 25-50% more efficient than those for rect-
angular systems with the same frequency resolution (Mersereau, 1979). As potential or
seismic wave fields in areas of unknown structure are most reasonably assumed circularly
bandlimited in map view, adoption of these new hexagonal sampling strategies could theo-
retically increase the efficiency of current two-dimensional surveys by 13-50%. These ideas
are particularly interesting for 3-d seismic applications, where present processing costs
are often prohibitively high. Following is a summary of hexagonal sampling theory and

processing algorithms, drawn from the references listed at the end of the paper.

Two-Dimensional Sampling Theory

Periodic sampling in one dimension may be described as multiplication by a comb
function

fly=") F(KT)8(t - kT), (1)

k==—c0
where T is the sampling interval. In the wave-number domain this corresponds to convo-
lution with another comb function

k_—oo k_—oo
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Woodward and Musr 184 Hezagonal sampling

and consequently replication along the w axis. Sampling theory shows that f(f) may be
exactly interpolated from f (¢) when F(w) is recoverable from ﬁ‘(w) through windowing—
i.e. when F(w) is replicated without overlapping. For a bandlimited f(¢) (F(w) = 0 for
|w| 2 %), this requirement is met when T' < 2X. Sampling efficiency is always maximized
by choosing T = 2;%—.

Periodic sampling in two dimensions may similarly be described as multiplication by
an impulse field in the time domain and convolution (replication) with the transformed im-
pulse field in the wave-number domain. For a rectangular sampling lattice these operations

produce
F(tr,t2) Z Zf (k1T1, k2 T2)6(ts — k1 T1)6(ts — ko T2) (3)
kl kg
. 4r? 2r 27
F(W]_,Wz) = F(WI,W2) * T1T26(0J1 - le_l)ﬁ(WQ - kZT_z)
2z
T,w2+k2T2) (4)

ky kg

where T} and T; are the sampling intervals defined in Figure 1. Since a hexagonal lattice
may always be formed through superposition of two offset rectangular lattices, generalized

hexagonal sampling equations are

fltr, 82) = f(ts, t2) ZZ[ 1 — k1T1)6(tz — 2k2T3)

ki ka2

+6(ty — (ky + )Tl)ci(tg — (2 + 1)T3)

2k, — k —k |
= (== 0Tk T) YUY 2T)6(t2—k2T2) (5)
kl kg

~ 2
F(wx,wz)=F(w1,wz)*_2” > 6w —kli”)é(wa—kZ%)(1+(—1)kl+k2)
k

27
E E F(wi+ (2k — k we +k 6
Tng = 1 1 2)T 2 2T2) ()

Note that rectangular and hexagonal sampling lattices transform into rectangular and
hexagonal replication (aliasing) lattices, respectively.

The rectangular and hexagonal sampling processes are pictured in Figure 1 as tilings of
the Fourier plane with interlocking tiles of fixed area 5,“:7 As in the one-dimensional case,
interpolation of a bandlimited f(t,25) (F(wy,ws) = 0 for (wy,ws) ¢ R) from f(t;,t5) is
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FIG. 1. Two dimensional sampling.
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possible when F(w;,ws) is replicated without overlapping—i.e. when R may be inscribed
within one of the replicated tiles. Since impulse intervals in the space and Fourier domains
are inversely related, sampling density is proportional to the area of the replicated tile shape
and sampling efficiency is maximized when replicated F'(w;,ws)’s are packed together as
closely as possible. This relation implies circularly bandlimited functions (F{w;,ws) = 0 for
w?+w?> 0?) may be sampled 13.4% more efficiently by a regular, hexagonal lattice than
by a square lattice (see Figure 2). Furthermore, from body-centered-cubic type arguments,
it is clear that hexagonal sampling is the most efficient sampling pattern possible (given

that the Fourier plane can’t be tiled with polygons of more than six sides).

Processing Hexagonal Sequences

This saving in sampling density for circularly bandlimited functions is augmented
when the hexagonal sequences are processed. Following are derivations of Fourier trans-
form, DFT and FFT equations for hexagonally sampled sequences. Because hexagonal
sampling is primarily important for circularly bandlimited functions, the arguments will
be limited to a space domain sampling lattice with T = &; and T = 1—corresponding
to regular (W, = Ws = %), normalized (W2 = ) hexagonal tiles in the wavenumber
domain (Figure 1). A lattice of this design will recover a circular bandregion of radius =
with maximum efficiency (Figure 2).

A. Fourier Transforms

Substituting these values for Ty and T, into equation (5) and Fourier transforming

the hexagonally sampled sequence yields

~ 2k; — k 2k; — k .
Ponun)= [ [ LY A kil - S0 —
. ezp(—iwltl il i(.c)2t2)dt1dt2

=Y Y7 (Zﬁ%,kz) exp [—i (%‘T;hwl + kng)]

ki k3

=% (ke e:cp[ (Zk‘\/_gk%l +k2w2)] (7)

ky ko

where the sudden appearance of f'(ky, k2) results from introduction of the primed (affine)

coordinate system of Figure 3. Inverse Fourier transforming over one period (R) of
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Case 1.: Circularly bandlimited function (F(wi,ws) = 0 for w} + w}) sampled without
aliasing by a squars lattice (T} = W Ta = §) of sampling density ¥|’-

.'L. [ ) [ ] [ ]
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® ® ® [ ) [ ) ®
Inseribed
[ ] [ ] [ ] [ ) [ ] v
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Sampling density= %’-

Case II.: Circularly bandlimited function (F(wy,ws) = 0 for w} + w§ > w?) sampled
without aliasing by a hexagonal lattice (T} = ﬁ-,Tg = %) of sampling density ‘ﬁﬂi.

4

e o © o © o W\‘

Replicated regular
hexagon of area 2\/3%’2

,(‘h")x e s 8 0 0 @ D

ce o e e e e Inscribed
_9‘:. N bandregion of area xW?
(1.4 )

Sampling density= ‘qg:

Conclusion:

Sampling density of nonaliasing hexagonal lattice - A
Sampling density of nonaliasing square lattice 3

A hexagonal sampling lattice of ﬁ- = * (which produces a regular hexagonal repli-
cation lattice) is 13.4% more eficient at sampling a circularly bandlimited function than
a square lattice (ﬁ- =1)

FIG. 2. Hexagonal vs. rectangular sampling efficiency for circularly bandlimited
signals.
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FIG. 3. Hexagonal coordinate system (Gallagher and Murphy, 1982).

F’(wl, wg) to recover f'(ky, k) produces

f (kl,k2 1{'2\/_/ / WI,OJ2 exp[ ( kl\/_§k2 Wi +k26«)2)] dwldwg. (8)

The difficult integration over hexagon R may be avoided by integrating instead over a

square containing 2 periods and halving the result

ki —ky

(k1 ke) = 47r2\/— /_W /_m/_ wl,wg)ezp[ (2 7 w1+k2w2)] dwidws.  (9)

Equations (7) and (9) are the forward and inverse Fourier transform equations for se-
quences f'(k1, kz), collected on hexagonal lattices with T} = ﬁg and T = 1. They may
be used to prove that: (1) rectangular Fourier transform properties (linearity, shift, convo-

lution, Parseval’s relation, etc.) hold for hexagonal systems, and (2) hexagonally sampled

complex sinusoids (ezp [ (%\‘7-—%)1 + kgWg)] ) are the eigensequences of hexagonal lin-
ear shift-invariant systems.

B. Discrete Fourier transforms

The DFT of a sequence of numbers is the Fourier transform of a replicated version of
that sequence, evaluated over one period in the wave-number domain; equivalently, it is a
sampling of the sequence’s periodic Fourier transform over one period. These operations
correspond to Fourier transforming after convolving with a periodic impulse field in the
space domain and multiplying by a periodic impulse field in the wave-number domain,

respectively. Consequently, for the sampling and replication lattices illustrated in Figure
4, the DFT is defined by

o ~ 2’61 '—kg 4z r
fa = Y3 - —k .
(K1, ka) = Fwy, wn) - £ b <°" 2 (2M; +M2)T1) d (“’2 2M2T2)

(10)
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Hexagonal periodicity: f(n,,n,) = f(n1 — My = M3, ng — M3)

for regular hexagons

=](n1—2M1—Mz,ﬂz) My=My=M

= f(nl - M3, ng -2M2)

Rp (M), M3) =one period
= (2M1 + Mg)Mz points

Ml =2 Mz =3
Fundamental period as hexagon

R,(M;,Mz) =one period
= (2M, + M3)M; points
{more obviously)

2M, + M3 —1

. Fundamental period as parallelogram

FIG. 4. Hexagonal periodicity.
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Reintroducing the skewed axes of Figure 3, dropping the primes, using equation (7), and

setting (T = 725, T, = 1) yields

F(ky, k) = F(zkl V3, by —— >

2M,
2M;+Mz;—1 M3—1
_ 122 i: f "y n2 g;;p( [(an - ng)(2k1 - kg) T+ ngks ])
n1=0 ne=0 , 2M1 + M2 M2
(nl)n2)a (kl,k2) € RP(MI,MZ)- (11)

The sums over n; and ny are taken over the fundamental period of f(nl, ng) in its paral-
lelogram rather than hexagon form for the purpose of simplifying the computation (Figure
4). Using similar reasoning, the inverse DFT may be described as
N 1 2Mo+Mi—1 My—1 N
niy,ng) = F(ki, k
f( 1, 2) (2M1+M2)M2 k12=:0 kgz=:0 ( 1, 2)

- exp (i [(2711(;]\2)_*(_2]]:;2; k) 7+ noke i, ])

(klak2)’ (n].’n2) € RP(MlaMZ)‘ (12)

For arguments identical to those presented in the section on two-dimensional sam-
pling, it can be shown the frequency resolution (sampling density in the Fourier domain)
associated with any DFT is maximized when the replication lattice is regular hexagonal—
when M, = M, = M. For this case a regular hexagonal DFT requires 25% fewer samples
than a square DFT with comparable resolution (3M? versus 4M? samples) and the DFT
equations become

SM—-1M-1

Fikika)= Y. Y flne,ng)eap (=i |(2n0 = na)(2ks = ko) 52z M + ngkgM])

n1=0 na=0

(‘n]_,ng), (kl,k2) € RP(M,M) (13)
5 SM~1M-1
f(nl, nz) M2 Z Z F kl,kz ezp( [(2”1 - ng)(2k1 - kg)_ + n2k2M])
k1=0 ka2=0
(ky, k2), (n1,n2) € Rp(M, M). (14)
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Figure 5 shows single bandregion DFT pairs for three hexagonally sampled functions:
an impulse/plane, an infinite vertical impulse sheet/infinite horizontal impulse sheet, and
a truncated vertical impulse sheet/modulated (sinc-like) infinite horizontal impulse sheet.
While the pairs are related as expected, the last two are modified by unusual wraparound
behavior. Because neighboring hexagonal tiles (replicating bandregions) are offset from
each other in the horizontal direction, an infinite horizontal sheet will always wrap through
a hexagon twice, symmetrically around the long axis. The same phenomenon occurs for

vertical features cutting through the corner regions.

C.Fast Fourier transforms

The kernel for the hexagonal DFT is inseparable. While this condition prevents appli-
cation of two successive one-dimensional FFT’s, it does not interfere with implementation
of Rivard’s faster, vector radix algorithm (a Cooley-Tukey type decimation in 2 dimen-
sions). Requiring M to be a power of two, the DFTps|f(n1,ns)]—F (ky, k:)—may be
broken down into four separate sums for the cases k; /kg: even/even, even/odd, odd/even
and odd/odd—

~

F(k1,kz) = DFTy[f(2r1,2r2)]

[ 27
+ exp -zw(kl - 2k2)] . DFT%L[f(Zrl, 27’2 + 1)]
[ .27
+ exp -—zm(%l - kz)] . DFT%«_[f(2r1 + 1, 2?’2)]
F g
+ eap —zgﬁ%(kl + kg)] - DFTy[f(2r1 +1,2r; +1)]. (15)

Just as ﬁ’(kl, kq) is hexagonally periodic with period M, each of the DFT%f_’s is hexagonally
periodic with period % Consequently, the DFT may be represented by

Fky, kp) = EE (ky,kg) + W2 ¥ EO(ky, k2)

+ W10 E k), k) + WEFF200(ky, ks)
. 3M
F(k + =~ kz) = EE(k1, k) — WZk2=F1 BO(ky, k)
+ WA=k 0E(ky, ky) — WEFF200(ky, k2)
~ M
F(ky + M, ky + 2-) = BE k1, k») + W2ka=kr EO(ky, k)
—~ W2a=k20E (ky, ky) — WELR200(ky, k2)
~ M M
Fk +57 ks + 57) = EB(ky, k2) - 2=k BO(ky, ky)

— W=k 0Bk, ky) + WEF*200(ky, k) (16)

SEP-38



Woodward and Musr 192 _ Hezagonal sampling

Y —3
r x —
ﬁﬁ::
—
—
| —
— .
’ —
I\‘ “\\‘:\h—
\ -
I\
]\ _—
] At —_— \
—_——

a
T

?/{L
MUI -
Mﬁ

L
1
—

=l
;@‘

e

FIG. 5. DFT pairs for hexagonally sampled signals: hexagonal aliasing.
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FIG. 6. FFT butterfly flowchart (Mersereau, 1979).
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where EE(ky, k2) represents the DF Ty of the even/even f(2ry,2r3), etc. The algorithm’s
butterfly flowchart is shown in Figure 6 for M=2. The 25% savings in number of samples
required for a given frequency resolution is preserved through application of the FFT—
with OM2logo M + 8M? real multiplies required for the 3M2-point hexagonal DFT and
12M2%log, M + 12M? for the comparable 4M2-point rectangular DFT.

Conclusion

The fundamental strength of a hexagonal sampling lattice is its great symmetry: a
regular hexagon is 50% more symmetric than a square, exhibiting 12-fold as opposed to &-
fold symmetry. This symmetry forms the basis of all the efficiencies cited above, underlying
the close approximation of a circular bandregion by a regular hexagonal bandregion. It also
suggests that discrete hexagonal systems will be superior to rectangular systems wherever
circularly symmetric functions are involved—a subject explored in the following paper
by approximating a circularly' symmetric filter with hexagonal difference stars. Finally,
hexagonal sampling meshes permit a more symmetric view of any geophysical problem, if

only by presenting a larger number of azimuths for profile studies and modelling.
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