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Migration by Hartley Transform

Rick Ottolins

Abstract

A Hartley transform is a variation of the Fourier transform with an integration kernal
coswt + sinwf. Most of its properties are analogous to those of the Fourier transform.
Computationally useful properties include that the forward and inverse transforms are
identical and the transform of real numbers remain real numbers. Solutions to the wave
equation can be derived in Hartley transform coordinates and used to image seismic data.
These are cheaper to compute than in the Fourier domain.

Definition

Hartley (1942) defined the transform pair

HT:  Ufw)= \/Lz_ﬂ /_ Z u(t)cas(wt)dt, (1)

1 o0

HT ': u(t) = \/T_w . U(w)cas(wt)dw, (2)

¢asX = cosX + sin x.

A proof that equation (2) is the inverse of equation (1) is found by decomposing these
equations into sin and cos transforms and looking up proofs of these inverses in any ad-
vanced calculus book. Note that equations (1) and (2) are of the same form. There are no

sign changes as in the traditional Fourier transform. Also the Hartley transform of a real
function is a real function.
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Properties of the Hartley Transform

Most Fourier transform identities and theorems have their Hartley transform coun-
terparts. I will give those here which are useful for computing wave propagaiion. These
are more exhaustively described in Bracewell (1983) and Hartley (194"  ‘han here. The
derivation of these identities involves a line or two of simple trigonometry.

The mapping between data in the Hartley domain and the Fourier domain is

HT(w) = REAL[FT(w)] - IMAG|FT(w)), (3)
REAL[FT(w)] = [HT(w) + HT(~w)]/2, (4a)
IMAG|FT(w)] = [HT(-w) — HT(w)]/2. (4b)

The shift rule useful for Hartley domain interpolation and Fast Hartley transforms.
HT(w + ¢) = HT(w) cos(c) + HT(—w) sin(c) (5)

A Fast Hartley Transform is coded in analogous way to a FFT algorithm. However, instead
of multiplying powers of complex exponentials, the shift rule is used. Stanford University
is seeking to commercialize the FHT, which prohibits me listing a code in this paper.

The derivative rule is used in solving the wave equation.
HT[f(t)] = wHT(-w) (6a)

HT[f(t)"] = *HT(w) (6b)

Notice that the second derivative resembles the Fourier transform rule, but has a positive
sign.
The convolution rule is used during migration.

2HT(w) = HT) (w) [HT; (w) + HTy(—w)] + HTy(—w) [HTz(w) - HTy(-w)]  (7)

Note that a convolution point uses two real multiplications, three real additions, and five
memory accesses. Convolution in the Fourier domain is a complex multiplication which
uses two more multiplications, one less addition, and one more memory access.

The mean rule is shortcut for computing one of the Hartley transforms during migra-
tion.

Z HT(w) = u(0) (8)
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Migration by Downward Continuation

This migration method is analogous to the phase-shift method. Start with the two-

dimensional wave equation.
1
sz+Pzz=;}_2Ptt (9)

The derivate rule is used to Hartley transform this equation over record coordinates (z, t)

2

by s 0
kP — P = 5;2-10, (10)

g&ls

where (k;,w) are the Hartley transform conjugates. A solution for this equation is

~ . .2
P(z,w,kz) = P(z = 0,w, k;)casz % - k2. (11)

This equation downward continues the recorded data. An image is obtained by inverse
Hartley transforming the data for { = 0 for each 2. The mean rule (equation 8) can be

used to apply this imaging step to equation (11).

N . 2
B(s,t=0,k) = Y P = 0, ky)easz\| 5 — K2 (12)
&

The downward continuation code for equation (12) is as follows. The input and
output have been Hartley transformed outside of this code. The correct impulse response

of a buried point scatterer is shown in Figure 1.

¢ CONSTANT VELOCITY MEDIA CODE
¢ OUTPUT IS IN MIGRATED TIME
¢ FREQUENCY SCALE FACTORS
dimension in(nomega,nkx), out(ntau,nkx), sine(nomega), cose(nomega)

dimension dsine(nomega), dcose(nomega)
scalekx2 = .b * pi2 * v * dt / (nkx * dx)
scalekx2 = scalekx2 * scalekx2
scalew2 = pi2 * pi2 / (nomega * nomega)
¢ COMPUTE EACH LATERAL FREQUENCY
do 200 ikx=1,nkx/2+1
k = (ikx-1) * (ikx-1) * scalekx2
ikl = nkx - ikx + 1
¢ INITIALIZE SINES AND COSINES
¢ AVOID EVANESCENT FREQUENCIES
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c¢ AT THIS POINT ADD LEVIN'S (1983) ARTIFACT REDUCING ALGORITHM
iomega = sqrt (k / scalew2) + 1
do 100 iw=iomega,nomega/2+1
iwl = nomega - iw + 1
kz = sqrt (scalesw * iw * iw - k)
sine(iw) = 0.
cose(iw) = 1.
dsine(iw) = sin (kz)
dcose(iw) = cos (kz)
100 continue
¢ DO EACH DEPTH
do 200 itau=1,ntau
out (itan,ikx) = 0.
out (itau,ikx1) = 0.
¢ EACH NON-EVANESCENT FREQUENCY CONTRIBUTES TO EACH DEPTH
¢ FOUR-WAY HARTLEY COORDINATE SYMMETRY REDUCES CAS COMPUTATION
do 200 iw=iomega,nomega/2+1
casplus = cose(iw) + sine(iw)
casminus = cose(iw) - sine(iw)
out (itau,ikx)=out(itaun, ikx)+in(iw, ikx)*casplus+in(iwi,ikx)*casminus
if (ikx>1) out(itau,ikx1)=out(itau,ikx1)+in(iw,ikx1)*casplus+in(iwl,ikx1)*casminus
¢ UPDATE EACH CAS FREQUENCY FOR EACH DEPTH
temp = sine(iw) * dcose(iw) + cose(iw) * dsine(iw)
cose(iw) = cose(iw) * dcose(iw) - sine(iw) * dsine(iw)
sine(iw) = tmp

200 continue

A cost analysis of the Hartley transform and Fourier transform methods is as follows:

e The FHT is two to three times faster than a FFT transform because no complex
arithmetic is involved.

o All four quadrants of the Hartley domain data— plus and minus frequencies of (w, k;)
must be used. Due to conjugate symmetry, only two Fourier transform quadrants are
necessary.

e In both transformations, only one quadrant of sines and cosines need be calculated
due to symmetry.

o The multiplication in equation (12) is real in Hartley transform coordinates but com-

plex in Fourier transform coordinates.
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Overall, the Hartley transform method is about twice as fast as the Fourier transform
method.

Migration by Coordinate Transformation

This migration method is similar to the Stolt algorithm. Note equation (11) is almost

an inverse Hartley transform. It can be turned into a Hartley transform with the definition

ky = \/w? v — k2.

Blk, k) = P(w = v/RZ + K2, kz)—é’%écas 2%, (13)

Equation (13) says that to migrate the Hartley domain seismic data, the data is interpo-
lated from (w, kz) to (k:, k;) and scaled.

The migration code for equation (13) is as follows. The input and output have been

Hartley transformed outside of this code. The correct impulse response of a buried point

scatterer is shown in Figure 1.
¢ CONSTANT VELOCITY MEDIA CODE
¢ FREQUENCY SCALE FACTORS
dimension in(nomega,nkx), out(nomega,nkx)
scalekx2 = .b * v * nt * dt / (nx * dx)
nomega2 = nomega * nomega * .2b
¢ DO EACH WAVENUMBER
do 200 ikx=1,nkx/2+1
k = scalekx2 * (ikx-1) * (ikx-1)
ikl = nkx - ikx + 1
¢ D0 EACH FREQUENCY
do 200 iz=1,nomega/2+1

izl = nomega - iz + 1

t =iz *x iz + k
if ((t>0).and. (t<nt2)) goto 100
¢ MAPPED FREQUENCIES IN SOURCE DATA DO NOT EXIST

out(iz,ikx) = 0.
out(izl,ikx) = 0.
if (ikx>1) out(iz,ikx1) = 0.
if (ikx>1) out(izl,ikx1l) = 0.
goto 200
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FIG. 1. Migration impulse response in Hartley transform space for downward
continuation method (top) and coordinate transformation method (bottom). A
point scatterer is located at (128, 100). The artifacts are not caused by the Hartley
transform, but could be eliminated by the methods of Levin (1983) and Harlan
(1982).
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10 = sqrt (t)
¢ LINEAR INTERPOLATION, HARLAN'S TRUNCATED SINC (1982) WORKS BETTER
¢ USE FOUR QUADRANT SYMMETRY OF SQUARE ROOT TO SAVE COMPUTATION
it=+¢
itl = nomega - it + 1
weightl = 1 - t + it
weight2 = t - it
out(iz,ikx) = weightl * in(it,ikx) + weight2 * in(it+1,ikx)
out(izl,ikx) = weightl * in(itl,ikx) + weight2 * in(iti-1,ikx)

if (ikx>1) out(iz,ikx1) = weightl * in(it,ikx1) + weight2 * in(it+1,ikx1)
if (ikx>1) out(izl,ikx1) = weightl * in(it1,ikx1) + weight2 * in(it1-1,ilkx1)

200 continue

A cost analysis of the Hartley transform and Fourier transform methods is as follows:

o The FHT is two to three times faster than a FFT transform because no complex
arithmetic is involved.

o All four quadrants of the Hartley domain data— plus and minus frequencies of (w, k;)
must be used. Due to conjugate symmetry, only two Fourier transform quadrants are
necessary.

o In both transformations, only one quadrant of square roots need be calculated due to
symmetry.

o The interpolation in equation (12) is real in Hartley transform coordinates but complex
in Fourier transform coordinates.

The coordinate transformation part of the Hartley transform method is about the same

cost as the Fourier transform method, though the Hartley transforms are faster.
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" CALCRUST

A CONSORTIUM APPROACH TO THE STUDY OF CRUSTAL STRUCTURE AND EVOLUTION

Earth scientists from the academic community in southern California,
whose interests include crustal structure and evolution, have formed a
regional consortium (CALCRUST) to apply the seismic reflection technique,
in combination with geological and geochemical observations, toward an
improved understanding of the subsurface in the southwestern United States.
This consortium has received funding from NSF for an initial two-year
program to carry out a research project entitled, "Deep-Seismic Profile
from the San Andreas to the Colorado Plateau (Segment I): History of
Continental Accretion Recorded in the Mojave-Sonoran Desert Region." A
pilot project along the San Andreas fault to perform geophysical
experiments with bore-hole and surface techniques will also be run. The
Mojave-Sonoran profile will begin in the southwestern Whipple Mountains,
cross the Riverside Mountains, and extend to the Big Maria-McCoy Mountains
region as far as funding allows. The focus of this line will be on large-
scale crustal extension as manifest in the Whipple-Riverside-Big Maria
detachment faults and on major crustal compression as displayed by the
stacks of Mesozoic thrusts in the area. Detailed geometries of detachment
faulting, detachment-related crustal folding, and Tertiary basin formation
will be analyzed. Imbricate thrusting and mylonitization of Mesozoic age
will be studied in detail as will their interaction with subsequent
deformation. Problems of terrane accretion will also be addressed if
funding permits with the study of the McCoy Mountains Formation and its
relationship to the Pelona-Orocopia Schist and Vincent-Chocolate Mountains
thrust system. Besides solving problems of regional importance, this line
should shed new light on many of the fundamental problems of continental
tectonics as expressed in other orogenic belts.

CALCRUST will focus in large part on low-angle structures———their
geometry and continuity in the subsurface——-and in particular, will attempt
to relate subsurface reflection data to surface geology and geochemistry.
Outcrops are abundant in the southwestern United States, thereby providing
excellent "ground-truth" control for subsurface interpretation and refine-
ment of geophysical methods. Furthermore, the geology is rich in problems
of current interest to the earth science community. CALCRUST will also
seek to advance techniques by which subsurface reflection data can be
related directly to subsurface rheology, petrology and/or geochemistry.

Because studies of the type proposed are leading toward work in
increasingly complex structural terranes, and because we are attempting to
tie subsurface reflectors to surface geology, this study will emphasize the
acquisition of high-resolution data - principally from the upper crust.
This will require procedures such as the use of high-density
vibrator/sensor spacing, clustered points and geophone groups, non-standard
vibrator/sensor geometries (offline, fan shoot, large-opening spreads,
etc.) and advanced data processing methods (trace-by-trace analysis,
"smart" stacking, migration before stack, travel-time curve analysis,
etc.). This program will extend to the third dimension our reasonably
complete understanding of the surface geology, and begin the process of
establishing geological relationships and continuity between diverse and
widely spaced terranes in the southwestern United States.



