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An analysis of p-Stolt stretch

Stewart A Levin

Introduction

In SEP-35 Claerbout suggests a generalization of Stolt stretch that is designed to tune
the trace stretching of input to Stolt migration to other than near zero dips. In this method,
based on a vertically-stratified medium, a Snell parameter p is chosen about which to optim-
ize. Here | rederive this result in a way that shows clearly that this new p-Stolt stretch
correctly positions such constant p events laterally but not vertically. A small numerical
example verifies the claim. | then present a straightforward modification that corrects the
vertical positioning error. In the process | discover a fundamental weakness of both the ori-
ginal and modified forms of p-Stolt stretch. The difficulty, illustrated in Figure 1, is that the
boundary between events with distinct dips, e.g. a disconformity or a fault plane reflection,

Is misplaced. Finally, | suggest possible methods to ameliorate this imaging problem.

Derivation

When a ray travels in a stratified medium its path is governed by Snell's law

= SI:\)@ = constant (M

where v is half the medium velocity. The arrival time slope di / dx of the associated plane
wave at the surface or any datum intermediate is p. The arrival time and offset at the sur-
face of such a ray emanating from a subsurface exploding reflector are
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FIG. 1. Some structures which p-Stolt stretch migration won't correctly image. These are
characterized by being defined by two or more distinct dips. Figure (a) shows how p-Stolt
stretch would handle an angular unconformity. The dipping beds, while correctly positioned
laterally, are terminated deeper than the unconformity surface against which they should
truncate. In (b) a dipping reflector appears laterally mispositioned because p-Stolt migration
places it below the fault plane which gave rise to it.

where 1, is the traveltime of a vertical ray.

When v =v, (constant velocity), we can check our formulas:

_I— = V1 -p%3%(7) = V1 —sin?@ = cos 8 (3a)
T U _ sin@ _
o T = ai = oos tan & . (3b)

Now the idea of a Stolt stretch is to posit a stretching function f(7) to make the
actual point diffractor moveout (summation) trajectories match constant velocity hyperbolas
as well as possible. Claerbout's idea is to match tangents (df/ dz) for a fixed, non-zero

Snell parameter. Thus we want the condition that a constant velocity hyperbola of the form

2
FAt) = F3(7e) + 3 . (4a)

0

where i.‘AzJ is the arrival time of a ray with parameter p from vertical traveltime depth 7, at
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offset z, matches the slope of the stretched diffraction curve at the correct offset and

arrival time; i.e.,

dlf (6], _ z
Equations (2) give us
L = i) (5)
and so we may rewrite (4b) in the form
pf v¥(T) dt
pr(t)f (L) = —— (4b')

Yo

verifying Jon's generalized p-RMS velocity formulation.

The problem with the above is that equation (4a) is not satisfied, as the following layer

over a halfspace model will show.

An example
Let the medium consist of a slab with velocity v, and traveltime thickness 1, overlying

a homogeneous halfspace with velocity v,. From equations (2) we may calculate

2
b7y,
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t(r,p) = T, S . (7
— — T>T,
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The interesting case is when 7>7, which is equivalent tc
t = t, = —————\/1_:?2;_2 . (8)
(4]
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Eliminating 7 from equations (6) and (7) lets us express z as a function of £ (and p)

pult t<t,

T Z | pult +pv? —vd), t>t, - @

Now, for a frame velocity v, the stretching function is given by

2ult
z t<t,
2z vs
2 t 7 = — = 10
[f ( )] vﬁp 2'UOzt° 21)12(1.‘ - to) t>t ( )
v} vF ¢
f f
which can be directly integrated to give
vlt?
2 t<t,
R vs
Fo(t) = v 2t? (w2 — vt —t,)? . (11)
+ 5 t>t,
uf Vs

Place a reflection point at depth 7 between 71, and £,. The arrival times from it follow
from equations (2). Let us take the following numbers: p=0.0003, v,=1500, v,=2500,
vy =2000 and T=1.1. We may then calculate

t, = 1.11978502
ty = 1.66304368
z = 1303.97743
(12)
7 () = 1.42678459
(D = 0.82500000
z2 |2
FRD) + 5 = 1.06152950
vf

showing that the summation hyperbola from the stretched apex position, f (1), passes about

360 msec above the point f (tp) that we'd like it to pass through.

So we see that we cannot guarantee that simple trace stretching will make the diffrac-
tion patterns become tangent to constant velocity hyperbolas at a non-zero p and the apex
p =0 simultaneously. Indeed, what equation {4b) really does is ensure the correct lateral
positioning of constant p reflection energy after migration. Nothing is guaranteed about

vertical positioning (and therefore dip).
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A fix

One solution is to not place the trajectory sum at the apex location but to shift the sum
vertically to correctly position at f (7). This is equivalent to saying that after migration in
the stretched coordinates, we unstretch according to a different formula than the input p-

Stolt stretch. So if we go ahead and migrate after p-Stolt stretch, the output would be at

172

2
n = | FAUL) - S (13)

vy

and we want it to show up at 7,, as determined by equation (2a). This gives us the relation

2 2 z?
n(re) = f (t)——v‘?
S
t z(t) 2(t) (e
_ z , z
= 2f=atr - =
0 Puy vy
or, differentiating,
2
dn® _ 2z(t2) dft dx (15)
a1, P Uf dT, dT,
Plugging in equations (2a) and (2b), this simplifies to
dnz _ 2z(t) 1 _52;*2(—7_07
dr, p vf (16)
2 .
= o K v3() | 1 - p%uP(1,) Y 4
- f vB 1 — p2uR(7) T
0 f p T

Thus, integrating (16), we may convert the migrated p-Stolt stretched traces back to

ordinary vertical traveltime.

But to what avail?

So far we have derived a Stolt stretch tuned to some non-zero Snell parameter. We
have shown how this Snell parameter may then be accurately positioned both laterally and
vertically. Unfortunately, this can only be accomplished by sacrificing accuracy at other
dips. In particular, flat events would be, incorrectly, shifted up or down. Thus faults and
angular unconformities would be no better defined than if we used ordinary migration - the
dipping event would migrate correctly but the beds that should truncate against it would be

shifted vertically away from the plane of contact.
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One possible improvement suggested by Fabio Rocca is to apply a dip filter, I, to
select low-dip events and apply ordinary Stolt migration to D *data and p-Stolt migration to
(1-D)*data, adding the two panels when done. Of course, care should be taken not to
choose a p that might correspond to evanescent energy at the higher interval velocities. If
one generalized this to a suite of narrow bands of p, the results should be similar to the

dip-domain migration of Robinson and Robbins (1978).

Another possibility is to use a more generalized dispersion relation to produce a summa-
tion trajectory with the same apex curvature but with additional free parameters. This would
let me adjust the summation path to be more nearly tangent to the true moveout curve at
the correct offset; i.e. to better carry out the objectives that led to equations (4a,b). This

generalizes the game of adjusting Stolt's """ factor to best fit the data.

Conclusions

We have found that for the purposes of imaging subsurface structures im)olving angular
unconformities, p~-Stolt stretch should work no better than ordinary Stolt stretch. A couple

of possible fixes have been suggested but not, at present, tried out.
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