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Kinematics' and Dynamics* of Dip Move-Out

Shaki Ronen

Abstract

The dispersion relation for the full migration of a constant-offset section will be derived
using kinematic arguments. Residual migration arguments will be used to decompose the
constant-offset migration operator into pre-stack partial migration followed by post-stack
zero-offset migration. A kinematicly exact dip move-out (DMO) will then be developed from
the pre-stack partial migration. 1 then continue from that kinematic result to improve han-

dling of amplitudes and to develop an offset extrapolation relation.

Kinematic DMO

The migration of a spike, 6(z)d(y)é(£ —£,), on a common-offset section, for constant

velocity, produces the ellipsoid

z ]2 y ]2 - 2
['uth/ZJ * [ut,,/zj * [’utn/Z ‘ =1 (-1

Here ¢, is the arrival time of the spike on the common-offset section, £, is the normal move-
out (NMO) time,

[ut,,/ 2]2 = ['utn/ 2]2 + h? (1-2)

and the offset vector is assumed to be in the z direction; no generality is lost by this choice

of coordinates. Eliminating ¢, from equation (1-1) produces

TSeIsmologlsts adopt the word kinematic from physicists, when they handle correctly only the travel time.
1 Dynamics handles also the amplitudes correctly.
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z? 2, o 2
=+ YR+ 2® = vt/ 2) (1-3)
1+ [Zh./ 'utn]
The (time-dependent) change of variable
2
2 = z 5 (1-4)
1+ [2h/vt,,]
compresses the ellipsoid (1-3) to the sphere
2
X2 +y?+z?= [ut,,/ 2] (1-5)

which is the zero-offset migration of a spike at the NMO time f,,. Zero-offset migration has

the well known dispersion relation §

2
H P‘f thyi o+ kf] = of (1-6)

Inserting the Fourier-transform of change of variables (1-4),

2 _ .2 2
k2 =k2N+ |20/ 0t, (1-7)
into equation (1-6) gives the important result
2 A 2
v
Ei Pc,2+kvz+lcf]=w,§— - k2 (1-8)
n

This is a dispersion relation for full migration of a common offset section; it maps the normal
moved-out common-offset section p, ({,,r,y) directly to the migrated section p, (z,z,y).

This can be done in two steps:
(1) Dip move-out
Substituting w§ in the right hand side of equation (1-8), when

2
=k# +

4
Wn

h/t,

Wo

Vs (1-9)

§ Variables subscripts notation in time and Fourier domains is
ik, z ik, Yy —tw,t
Py(wgky ky) = fdxe z fdye v fdtae a2 p (0 sY)

where (1 is a general subscript. | will later use equations like {1-5) and (1-6) as time domain and Fourier domain ex-
pressions of the same process (in this case three-dimensional zero-offset migration). The connection between
these two equations Is that equation (1-5) is the shape of the Green function (or impulse response) of the differen-
tial equation that Fourier-transforms to the dispersion relation (1-6).
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Equation (1-9) is time dependent: w, and t, appear together, it is velocity independent

(but constant velocity was assumed !), otherwise it is similar to two-dimensional zero-

2
%] = k2 + k2 (1-10)

offset migration,

Table 1 summarizes that similarity.

Migration DMO
velocity v h/t,
k, ke,
variables
[ Wn
vk, o
input Puloky) | Pplwy.k;)
output Pk, k) | Polwgk;)

TABLE 1. Variables and parameters of migration and of DMO.

The DMO is a two-dimensional operation (for a fixed y); the input is normal moved-out,

common-offset section p, (x,t,); the output in the zero-offset py(z,ty) plane. The offset is

along the z direction; The DMO moves in £ and z directions; nothing is moved in the y direc-

tion. In the case of no dip, &k, = 0 and the DMO just copies the input to the output; vg = w,,.

(2) Zero-offset migration

Migrating the extrapolated zero-offset data, py(fg,z,y), to the migrated section

Pm(2,2,y), with the dispersion relation

(/2 k2 + kf + kf] = wf

(1-11)

The similarity between DMO (equation (1-9)) and migration (equation (1-10)), can be

used to derive a Stolt like DMO method.

Recall Stolt's method for migration:

a(e,k,)

Fnleks) = Sy

Py [w(k,,lc,),kz] (1-12)
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where pp,(x,2) is the migrated section and p,(z,t) is the unmigrated section. w(k,,k,) is
given by equation (1-10). Table 1 is used to translate the variables used in equation (1-

12), yielding the following Stolt-DMO

0w, k)
Polwgiky) = ————2—P, wn(kz,wo),kz] (1-13)
6(wo,lc,)

wn (kz,00) is given by equation (1-9). This is not the final result, however, because the
dispersion relation {1-9) is time-dependent and relation (1-10) is time independent; therefor

the DMO does not correspond to a physical time independent wave equation like migration.

Rlise
hk
—]’ ] = woA (1-14)
wﬂtn

where A(h,k,,wq,k,) is implicitly defined. The Jacobian is also time dependent:

Rewrite equation (1-9) as

&)n(kz,wg) = Wg 1+

(wp, kz)
6(w°,kz)

= A™! (1-15)

Equation (1-13) holds for every t, separately. The input is decomposed to £, layers, each

of which Fourier-transforms like

i

Ppop k) = e——oﬂtnpn(tn’kz) (1-186)

Substituting equations (1-15) and (1-16) into (1-13) and integrating, we obtain
Polwoks) = [dt, A7le g (1, ,k, k) (1-17)

which the result of chapter 1 of Hale's thesis (1983).

Dynamic DMO

Equation (1-1) says nothing about the reflection coefficient amplitude along the ellip-
soid. The dispersion relation (1-8), however, will produce a certain amplitude, which
corresponds to a uniform amplitude on the sphere (1-5). Stew Levin called to my attention
that this amplitude is not necessarily correct; the question was raised: what distribution of
reflection coefficients along the ellipsoid will reflect an isotropic spherical wave, diverging

from the source, to an isotropic spherical wave converging on the receiver?

An approximate answer for high frequency waves may be obtained by assuming flux
conservation within ray tubes The geometry is shown in Figure 1. The calculation can be

done in the z,z plane and then rotated around the z axis to give the three-dimensional
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FIG. 1. The ray tubes.

picture. The energy in the diverging ray tube is d 8. If £(8) is the the square of the abso-

lute value of the reflection coefficient at point P, then the energy in the converging ray tube

is £(68)d 8. Isotropic converging wave requires that #(8)d 8 =d g, hence

RO = |5

d !
To evaluate this expression, refer to Figure 1. The offset is
SG = 2h
The total travel time is
SP + PG = v,

The sine theorem for ASPG gives

SG GP SP

sin(g—6) " sin@ sing

Equations (2-2) simplify to
2h(sin@+ sing) = v, sin(p — O)
Differentiating equation (2-3) gives the result

vtpcos(p — ) + 2hcosl

F(O) = vty cos(p ~ ) — 2hcosyp
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shown in Figure 2.
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FIG. 2. The asymmetric ellipse

Can this be right ? Superposing such asymmetric ellipses to Kirchhoff-migrate before
stack, would bias the amplitudes of reflectors; reflectors dipping away from the receiver
toward the shot would image stronger than reflectors dipping the other way; migration of

plane dipping reflectors would have wrong amplitudes.

The validity of the ray approximation near caustics like the foci of an ellipse is ques-
tionable but this analysis considers the field in a finite distance from the singular points of
the ray approximation. This problem is related to Eisner's acoustic reciprocity paradox
(1983); Reciprocity predicts that exactly the same data would be recorded if the locations
of shot and geophone were reversed; i.e., the data is an even function of A. The problem
here is not with the field at the points S and G, but around these points, and this field may

not be a subject to reciprocity.

Stew Levin (this report) may have the solution; in short, superposition of the coeffi-
cient £(6) is not valid. the exploding reflectors concept allows superposition of reflectors
because it assumes that the reflectors are the wavefield at time t =0; the coefficient 7 is
the reflection coefficient (or even the absolute value of it) but not a wavefield. Equation
(1-17) followed by zero-offset migration will produce a symmetric impulse response. The
reflection coefficient has yet to be imaged by summing (stacking) over all the offsets. This

implies that the extrapolated zero-offset sections p, of equation (1-17) depend on the

SEP-38



Fonen 157 DMO Kinematics and Dynamics

offset from which they were extrapolated, p, ({,,k;,h), even though they all correspond to

same earth model.

Offset extrapolation
The previous section ended in concluding that the extrapolated zero offset section pyg

—iwgAt,

Polwgkz,h) = fdt, A7'e P (bp oz k) (1-17)

is not offset independent; the variable h cannot be dropped in the left hand side. This is
unfortunate because reflection seismology data contain a finite range of offsets. We would
like to believe that all the common-offset sections contain the same information except ran-
dom and aliasing noise but it seems that is not true at least when we used equation (1-17)
to extrapolate the zero-offset from a general offset. In practice we make this assumption
when we have a narrow range of offsets. | will show directly that this assumption is only

approximately correct.

If Po(wg,k;,h) of equation (1-17) is independent of A then for all w; and k, we have

d 0 _y iwgdt,
0 = —Polwoksh) = Hfdt,,A 1g'“%n p (£, k,,h) (3-1)

A is defined by equation (1-14). For all £, we have

0= 5‘%{14-1 e*o%n p (¢ k_,h) (3-2)

Differentiating this equation, using

A _ hkf

8h Wit

gives

8P, | _ 84 . kfh
3 —{A 3h ’Lwotn P, (3-3)

that can be solved to yield the familiar result

ZhZ

Pplty ez h) = Aexp|—i

2w0tn ]Po(wo,kz) (3'4)

which is known to be an approximation; the phase of equation (3-4) was shown (Ronen,
1983) to give a parabolic impulse response, instead of the elliptical exact one. The ampli-

tude term enhances dipping events.
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Conclusions

The pre-stack partial migration is a two dimensional, in-line, operator. It is velocity
independent and time dependent. Attempts to go beyond kinematic analysis led me to a
paradoxical amplitude, and to an approximate offset extrapolation. No approximation was
made except in assuming that the extrapolated zero-offset sections were independent of
the offset from which they were extrapolated. There still may be an exact offset extrapo-

lation but it is not given by the kinematicly exact relation of equation (1-17).
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