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Overturned-wave migration by two-way extrapolation

Zhiming Ii, Jon F. Claerbout and Richard A. Ottolini

Abstract

Overturned waves are the reflections from the undersides of steeply dipping reflectors.
Conventional depth migration usually treats them as evanescent waves and ignores them
when downward continuing the wave field. To migrate the overturned waves, the reverse
time migration method based on the two-way non-reflecting wave equation was suggested
by Baysal, Kosloff and Sherwood {1984). As an alternative approach to handle the same
problem, a two-way extrapolation method to migrate the normal and the overturned reflec-

tions separately was recently proposed by Claerbout (1984).

The principle of Claerbout's two-way extrapolation method and some practical compu-

tation examples are discussed in this paper.

Introduction

Migration by depth extrapolation is usually done by downward continuing the wave field
observed on the surface to various depths of exploration interests. Using the exploding
reflector concept (Claerbout, 1982), zero-offset time section can be regarded as seismo-
gram recording the waves which are generated from the reflectors and propagate with half
rock velocities. The dispersion equation used in the phase-shift migration has the restriction
that waves generated from exploding reflectors must travel only upwards at any depth. The
other energy which goes beyond the limit is said to be evanescent, and is ignored or set to

zero.

By separating the wave field into downward-going and upward-coming components, the

path of an overturned wave can be divided into two subpaths: one goes downward until it
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hits a turning point, the other comes upward after the turning point. In applying the down-
ward extrapolation, the upward component of wave field is migrated down to the reflectors
or the turning points. After the downward extrapolation, the upward extrapolation of the
evanescent energy saved in the first pass of continuation will migrate the downward com-
ponent to the reflectors' positions. Thus, one image of the normal reflection and another of
the overturned reflection are made. Therefore, overturned reflections can also be migfated

to give us more information about the subsurface structure.

Simply normalizing and summing the two images can enhance the resolution of steeply
dipping reflectors; this enhancement can be useful in determining some geological features
such as faults or saltdomes. Further more, the precision of velocity analysis and reflectivity
estimation may be done more precisely by studying both the geometrical and the amplitude

relationships between these two images.

Separating ray path

A zero offset section can be analyzed by use of the exploding reflector concept, which
is that rays are generated at exploding reflectors and received at the earth surface. Each
ray's path can consist of two subpaths, one going down, one coming up. A normal reflection
has only upward path, but an overturned reflection has both downward and upward paths, as

shown in Figure 1.
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FIG. 1. Normal reflection 0,X; has only upward raypath. Overturned reflection 0,X, has
downward path 0,7 and upward path 7X,. 0, and O, are the exploding reflectors.
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Two-way extrapolation

The depth extrapolation of the wave field P(w,k,,z) from depth z to depth 2z +Az is

based on the following equations:

Plwk,,z +Az) = P(w,k,,z)eﬂc’Az ) (M)

e TR
) \/1 -— (2)

where P(w,k,,z) denotes the 2-D Fourier transform of data P(f,z,z), and v(2) is one half

of the rock's velocity.

The dispersion relation (equation (2)) has the constraint that energy must travel
upward. The downward energy that satisfies |wk,/w|>1 is called evanescent energy
because the square root is imaginary. The conventional way of processing of evanescent
energy is simply not to incorporate it into the computation of the field at each depth. The

extrapolation operator thus applies only to the region |vk,/ w]<1, as depicted on Figure 2.
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FIG. 2. The extrapolation operator exp ( —iwAzV/1-v?(2)k2/ w® / v(2) ) applies only to
the shaded region |vk,/ w|<1.

In a medium with linearly increasing velocity, this shaded region narrows as downward

continuation goes deeper.

Equations (1) and (2) relate the wave field P(w,k,,z +Az) at depth 2 +Az and the field
P(w,k,,z) at depth z in transform domain, providing that the forward Fourier kernel is
exp(iwt —ik,z). When the wave field has been downward continued through different
depths to the maximum depth, the normal reflection (Figure 1, 0,X;) is migrated to the

exploding reflection point, 0,, giving the image of the top of the reflector. However, the
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overturned reflection, 0,X;, is migrated only to the turning point, 7', because the downward
extrapolation using equations (1) and (2) migrates only the upcoming waves. The overturned
reflection field stops being migrated when the energy of this field lies outside the shaded
region in Figure 1 and becomes evanescent. This partially migrated energy is saved at its

turning point for the further processing.

In order to continue migrating the energy overturned at the turning point (Figure 1, 7)
to the exploding reflector (Figure 1, 0;), an upward extrapolation is needed. Because such a
second pass of upward migration is still used to extrapolate the wave field toward the
exploding reflector as the first pass of downward continuation, equations (1) and (2) are
still valid for the upward extrapolation. The shaded region in Figure 2 will widen as the
operator moves higher. The partially migrated overturned energy saved in the first pass
migration is thus reintroduced and extrapolated upwards to generate an image of the under-
side of the steeply dipping reflector. Finally both images of the upside and the underside of

the reflectors are constructed.

Two examples

In order to test this method we generate two synthetic examples. The first consists of
normal and overturned reflections from a single reflector. The second example is of a geo-

logically more realistic model of a reverse fault.

In a linear velocity medium (i.e., velocity varies linearly with depth), the receiving posi-

tion and the arrival time of a normal reflection can be expressed (Slotnick, 1959) as:

]
Z, =T, — ;})—{\/1 —p?u§ — V1-pi(z)|, (3)
,  |w@|ievas _},Tag] ]
th = = n , (4)
R R L) J

while equations (86) and (6) define the receiving position and the arrival time for an over-

turned reflection:

1
Z, =, + E{\/‘]—pz?)g + V1 —pz'uz(z) y (5)
2 {1+\/T——p2110?][1+\/1—p v*(2) l
t, = = In > ; (6)
a pugu(z)
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where (z,,2z) is the position of the reflector point, p =sin@/wv(z) the ray parameter at
(z,,2), 6 the dip of the reflector at (x,,z). As shown on Figure 3, the velocity function is

v(z)=vy+taz.
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FIG. 3. A reflector at (x.,2) generating the normal reflection received at z, and the over-
turned reflection received at z,. The velocity function is 'v(z)z'uo+az.
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FIG. 4. (a) A model of a 45° dipping reflector. The velocity function is v (2)=500+5z. (b) A
zero-offset time section of the model depicted in Figure 4 (a). It is calculated by using

equations (3)-(6). Normal reflection is on the upper left corner, and overturned reflection on
lower left corner.
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Figures 4 and 5 show the separate processings of the normal reflection and the over-
turned reflection that are generated from a segment of 45° dipping reflector. As expected,
the downward extrapolation handles only the normal reflections, and the upward extrapola-
tion deals only with the raypaths between reflectors and turning points. Using both extrapo-

lations migrates completely the overturned reflections.
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FIG. 6. Results of migrating the data shown on Figure 4. (a) Migrated time section of the
normal reflection by the downward extrapolation. (b) Migrated time sections of normal
reflection by the two-way extrapolation. (¢) Migrated time sections of the overturned
reflection by the downward extrapolation. (d) Migrated time sections of the overturned
reflection by the two-way extrapolation.

SEP-38



Ii, Claerbout and Ottolini 147 CWAYMIG

A geologically more realistic model was also constructed, which can be analogous to a
reverse fault. To simplify the calculation, the effects of magnitudes of reflection coeffi-
cients, transmission, attenuation and multiple reflections are not incorporated into the model-
ing. Figure 6 shows the model and its synthetic seismogram. The normal reflections from the
tops of reflectors are present in Figure 6 (b) along with an overturned reflection from the

underside of the overthrust fault plane.
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FIG. 6. (a) A model of a 70° reverse fault, with the velocity function v(z)=1000.+z
(meters/sec.). (b) Synthetic seismogram of the model. The normal reflection of the fault
plane is shown on the upper left. Overturned reflection of the fault plane is on the lower
right.
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The migrated time sections of upward extrapolation and downward extrapolation are
shown on Figure 7 (a) and (b),respectively. The two different images of the overthrust fault
plane fit exactly at the same proper place. Normalizing and summing these two results
together gives a stronger indication of the fault plane than the conventional downward

extrapolation result shown in Figure 7 (a). The summed depth section is shown on Figure 8.
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FIG. 7. (a) Migrated depth section by first pass of downward extrapolation. (b) Migrated
depth section by two-way extrapolation.
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FiG. 8. Final migrated depth section by combining (a) and (b) in Figure 6. The fault plane
image has been significantly enhanced.

Conclusion

Claerbout's two-way extrapolation can migrate both the normal reflection and the over-
turned reflection. It offers the means to image both sides of steeply dipping reflectors, and
enhances the resolution of such reflectors. The velocity distribution above a fault plane
may be estimated by comparing the relative migrated positions of normal and overturned
reflections. Because two reflections from both sides of the reflectors can be taken into
consideration simultaneously, the two-way extrapolation may also increase the accuracy of

estimating the reflection coefficients of a steeply dipping reflector,
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over the past two decades, as
shown by the successful launch of
a series of man-made earth satel-
lites and space rockets. How-
ever, this is the first breakthrough
in super-computer technology.

The main machine of the “Galaxy” super-computer at work,

i

‘Galaxy’ Super-Computer

China has successfully produc- China began to produce its own
ed its first supercomputer, cap- computers in the early 1960s.
able of performing more than 100 Rapid progress has been made
million operations per second. Its
smooth operation has already been
certified by the state.

The “Galaxy” super-computer
"was developed by the research
staff of the University of Defence
Science and Technology after six
years of continuous effort. Some
20 other research institutes and
production departments across
the country also contributed to
the effort.

Beginning in May 1983, the
State Council organized 95 com-
puter experts and technicians
from 29 departments throughout
the country to begin examination
of the finished computer. The
super-computer had an uninter-
rupted trial run of more than
13,000 hours. The results proved
the computer system to be reliable,
correct, advanced and up to the
national standard.

There are now only a few coun-
tries in the world able to produce
super-computers. The success of
China’s “Galaxy” super-computer
will narrow the technological gap
between China and the advanced
countries, and marks a new phase
in Chinese computer sciences.
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