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A short note on implementing hyperbolic velocity filters

Poul Fowler

Abstract

Tatham et al. (1982) and Noponen and Keeney (1983) have described a method of
applying a normal moveout velocity filter during slant stacking (tau-p transform). This paper
discusses briefly a few features of formulating this hyperbolic velocity filter in a vectorized

manner suitable for impiementation in an array processor.

Introduction

Within the limits of the usual approximation, continuous reflectors appear in common
midpoint gathers as hyperbolas. The parameters generally used to to describe these hyper-
bolas are the zero-offset intercept time and the normal-moveout (NMO) velocity which
characterizes the curvature. At any specified point on such a hyperbola, the velocity may
be alternatively defined not by the NMO value, but by the local moveout, that is, by the
slope of the tangent to the hyperbola at that point. Common midpoint stacking at a given
NMO velocity, or the constructive integration of the data along hyperbolic trajectories, is a
velocity selective filter. Slant stacking (tau-p transforming) can be thought of as summation
along the tangents to the hyperbolas instead of along the hyperbolas themselves. Tatham
et al. (1982) and Noponen and Keeney (1983) pointed out that the local moveout charac-
terization of velocity in a midpoint gather can be exploited to incorporate a hyperbolic velo-

city selectivity into slant stacking of the gather similar to that of NMO stacking.

Consider an hyperbola in a (h,t) gather specified by the parameters of zero offset time

Ly and normal moveout velocity v:

£ =gl - (1)
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We can differentiate (1) to get the tangent to such a hyperbola:

P e (2)
Identifying dt / dh as the ray parameter, p, yields
ip

This equation tells us how to assign a normal moveout velocity to a point (h,t) if the ray
parameter p is specified; it thus provides the key to incorporating moveout velocity informa-
tion into slant stacks. Essentially, equation (3) shows whether each each combination of a
point (h,t) and a ray parameter P can possibly correspond to a tangent to a hyperbola
whose moveout velocity meets desired criteria. If they can, that point is included in the

slant stack sum for that value of p; If not, it is excluded.

Vectorized implementation of hyperbolic velocity filters

The algorithm described above is inefficient: it requires a computation and decision
step for each (h,t,p) point. The most efficient implementation of slant stacking in general is
achieved in the Fourier transform domain (Ottolini and Claerbout, 1984; Harlan, 1983); how-
ever, the velocity filtering step described, being time and space variable, requires realization
on untransformed data. Slant stacking in the time-space domain can be accomplished much

faster if the algorithm is vectorized to allow use of an array processor.

The slant stack algorithm in the time domain can be readily vectorized. Consider a mid-
point gather as a two dimensional data array, data(h,t). This may equally well be described
as a single vector, or one-dimensional array, dafa(h); each of the elements of the one
dimensional array is then a vector parametrized by time, namely the corresponding column of
d(h,t). The output of a slant stack algorithm can similarly be seen as another data vector,
M(p), whose elements also are vectors parametrized by (zero-offset) time. The slant
stack process is then implemented simply by successively applying a time shift of L =ph to
each element of dafa(h) and summing it into the appropriate element of stack(p). The size
of the ph shifts will not in general correspond to the interval of time discretization of the
data, so an interpolation step is implicit in each shift as well, although we do not explicitly
describe the interpolation in the algorithm descriptions which follow. In summary the time

domain slant stack algorithm becomes:
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for eachp §
Jor each h §
shift data(h) by ph
add shifted dafa(h) into stack(p)

!

To incorporate the velocity filtering step into the vectorized slant stack, we rewrite equa-
tion (3) as

t = (4)

Suppose we wish to include in our slant stack only those points corresponding to NMO velo-
cities between some bounds v ;, and v ;. Let us assume that these velocity bounds are
constants independent of h and £. To apply these bounds, we need only limit our stack to

those points in each vector data(h) for which

h h
7 = lmn St <t = ) (6)
p'urmx p'vrrm

We thus need to create for each p, a second array limits(h), whose elements are vectors
that contain zeroes outside the appropriate time limits and ones inside. Then for a given A,
taking the inner product (pointwise multiplication) of the vector dafa(h) with the vector
limits (h) truncates the data being included in the stack as desired. The algorithm for con-
stant velocity bounds thus becomes:
Jor each p §
for each h }

truncate data(h) between L and £y

shift data(h) by ph

add shifted data (h) into m(p)

Incorporating depth-variable velocity bounds

For practical applications such as muiltiple suppression we often might want to use
velocity bounds that are not constant. The most common uses would be of velocities which
vary with depth, or with zero-offset travel time. This case can be incorporated into the vec-

torized algorithm described above if we make the reasonable assumption that the velocity
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bounds are monotonic, non-decreasing functions of zero-offset travel time. Equation (1),
which describes the hyperbola with NMO velocity v which passes through a given point

(h,t), can be rewritten using the substitution from equation (3) as
t? = t& + hpt

The zero intercept, or zero-offset travel time, for a hyperbola passing through (h,t) with

tangent p is then given by
to = Vi(t—hp) (6)

This tells us how to relate v (t) to v(£y) for a given A and p. Let us use a prime notation on

velocities to designate the assignment indicated by equation (6) of a corresponding zero-
offset velocity to a point (h,p,f) with non-zero offset: v*(t) = 'u[ to=VI{f—hp) ] Suppose

that for some time {; and a specified h and p,

;-;71’-_—= vty = v (t)) = 'Um[to:\/tl(tl— 55]
1

Then for any {z=f,,

v(ty) = '\/%’E—S ;’;_1 = Umx[to=\/m]

But £ ,<f, implies that

\/(tl(tl—hp) = '\/(tz(tz_hP)

We can now utilize our assumption that v .. is a monotonic function of ¢; to conclude that
V| 0= VI D) | < ¥ to= VETE,p)
Hence we have shown that
Vt2) = Vg [ £0=VElEa D) | = ¥ m(t2)

In summary, we have shown that, for a given p and h, if we can find a time £, for which the
hyperbola through the point (h,t,) with slope p has the maximum allowable zero-offset NMO
velocity, then at no subsequent time £ at that offset h can a hyperbola of lower velocity
pass through (h,f) with slope p. In other words, for each p and h, truncation of the data
vector before a suitable lower cutoff time value restricts the maximum velocities included in
the slant stack, just as in the case of velocity bounds which were independent of time. A

similar statement and proof will hold for minimum velocities and maximum times, so the
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algorithm outlined above for constant velocity bounds will also work for velocity bounds that
vary as monotonic, non-decreasing functions of zero offset time. The actual values of the
time cutoffs to use may be more difficult to find for this case than for constant velocity
bounds, but once they are established the same algorithm may be used for implementing the

filter.
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ompean how geophysncs work

sizkhe Geological Society of America has
*gMBen Prof. George A. Thompson, chair-
“#afi of the Department of Geophysics, as
recipient of the George P. Woollard |

Award “in recognition -of distinguished
‘somtributions to geology through the ap-
-Jigtion of the.principles and techniques -
eophysics.”

+ Thompson is the first holder of this
_award, which is named for one of-the .
: &neers in the plate tectonics revolution.
_:1n’the pomination, Prof. Burt Slemmons
“of the University of Nevada said that
" Tlypmpson comes closer than anyone else

“#0 being a renaissance earth scientist.”
. Slemmons cited Thompson’s “outstand-

msearch results obtained from ap-

g geophysical techniques to the solu-
an. of regional geologic problems of the
Bhesphere” and his impact on student -

acievements. The nomination men-
tiotspd- Thompson’s national visibility, his . —.
‘outitanding academic record, and hisver-  + © . George A. Thompeon
- sptility in teaching a broad range of sub- o -
 jects, from sedimentary petrology t0 adv-  Miller professor of earth scignces. Recent: .
anced courses in geophysics. . . - ly, Dean Allan Cox delegated to Thomps .
- 1’59mpson§ early geophysical -studies . sop responsibility for tracking faculty:.."
A the tectonics of the Basin and Range appointments and promotions in the: -
‘Promince established the framework for la- School of Earth Sciences. ¢ .
-ter, research by Thompson and his stu-* Thompson -accepted the Woollard
. M that established two periods of ex-  Award at.the annual meeting of the
tenaipn, each characterized by a different Geophysics Division of the Geological

- rew regime. “In addition,”. Slemmons  Society of America in Indianapolis on.
* paisted out, “he and his studernits have Ngv. 9. . ’

ade important contributions to thermal

crustal evolution, plateau uplift, and the

 interpretation of COCORP seismic reflec-

omdata.” -
* “Fhompson has been an NSF postdoc-
saral fellow at the Lamont Observatory,

Coliginbia University, and a Guggenheim

_feBow in New Zealand. As a graduate stu-
‘it with degrees from Penn State and
‘Thompson taught Stanford’s first
fopliysics course in 1947, ,

. Hejoined the faculty as an assistant pro-
fesior' upon receiving his Ph.D. in 1949,
became chairman of geophysics in 1967,
anﬂ"filaired both geophysics and geology
from 1979 10 1982 "1n ‘1980 Thusabeon
received an endowed chialr as the Otto N




