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Resolution of interval velocities from stacking velocity
anomalies

John Toldi

Abstract

Stacking velocities contain useful information about laterally variable interval veloci-
ties. In recent papers (Rocca and Toldi, 1982, Toldi, 1983), we have discussed how this
information can be extracted through a linear theory. In this paper, | discuss the limits on
the resolution of interval velocity anomalies as derived from stacking velocities. In other
words, exactly how much can one learn about the lateral and vertical extent of a region of

anomalous interval velocity from the stacking velocities?

Introduction

In a recent paper, (Toldi, 1983), | made my first attempt at inverting the stacking velo-
cities from a field dataset. The dataset was unusual in that the only reflectors in the entire
dataset were very closely spaced in depth. As a consequence the results were rather

unsatisfactory. In particular, the vertical resolution was very poor.

This brought up the question of how much vertical resolution of interval velocity
anomalies is actually possible from the stacking velocities from one reflector. A related
question is whether stacking velocities can resolve the interval velocities to within a verti-
cal spacing less than that between reflectors. Note that the Dix formula provides one velo-
city between each pair of reflectors. Thus, the velocities derived through this linear stack-
ing velocity method will have at worst a vertical resolution equal to that provided by the Dix

formula.

Because the method is linear, many tools are available for studying resolution. In this
paper, | concentrate on what can be learned from the singular value decomposition of the

matrix that relates anomalous interval velocities to stacking velocities.
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The linear theory
For a given reflector at depth z,, the linear theory provides the stacking slowness
response as a function of midpoint y, to an impulse of anomalous interval slowness at posi-

tion (Y4, s24,). More precisely,
bwg(y.z,) = G(Y.2r.20n:Yan) DAWin (Yo sZan) AYan A2an (1

where Aw; , Aw,, and G are the anomalous stacking slowness, the anomalous interval slow-

ness, and the impulse response respectively. The geometry is shown in figure 1.
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FIG. 1. Geometry for constant background velocity. Shown are a few raypaths to the
reflector at depth 2, for the midpoint gather at y. The maximum offset is L. The impulse of
anomalous interval slowness has coordinates (yg,,2.,)-

For completeness | include the impulse response, G,
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In equation 2,

L = effective cable length =

As can be seen from figure 2, the stacking slowness at one midpoint will be influenced by

interval slowness anomalies within half an effective cable length to either side. The
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effective cable length L’ is thus the aperture of the filter that relates interval slowness to

stacking slowness.

Zan | §

N

FIG. 2. L is the maximum offset, i.e. the cable length. L’ is the effective cable length for
reflector at depth 2z, and anomaly at depth 2,,.

Superposing the effects of impulses at all depths and midpoints, one finds:
Mg (2,,y) = ff G(2,,Y YansZan) My (Yans2Zen ) dYan d2gn (3)

By expressing the interval velocity distribution in terms of a set of basis functions one
can convert the integral of equation 3 into a sum. In later portions of this paper, | will dis-
cuss a specific choice of basis functions. For the present | assume a general set of n

orthonormal basis functions h;(y,n,24,), such that:
n
AW (Ygns2gn) = 2 mjhj('y:m Zan) (4)
j=0

The m; are the expansion coefficients.

Inserting equation 4 into 3 yields:
n
[dwe]: = 3 Gym, (5)

where,
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Gy = ffG(zr:ysym’zcm) hi(Yan 12an) 200 AYon (6)

The subscript i refers to the point in the data space: each [Aw,] ; is the anomalous stack-
ing slowness for a specific reflector at a specific midpoint. Treating the data as one big

vector makes for the simple notation of equation 5.

Basis functions-Model parameterization

In a paper in the last SEP report (Toldi, 1983), | discussed the need for a space domain
implementation of the linearized stacking velocity method. This need arose from a desire to
use stacking velocities from reflectors that were not continuous across the entire section of
interest. Furthermore, in a space domain method, weights can be attached to the stacking

velocity picks according to their reliability. These weights can vary along a reflector.

In order to implement the linear theory, one must express the interval velocity model in
terms of some set of basis functions. (see equations 3,4 and 5) The solution will naturally be
restricted to the space spanned by the basis functions. Thus, in choosing a set of basis

functions, one is already making decisions as to the possible resolution of the model.

In this paper | use basis functions that are sines and cosines in the midpoint direction,
and thin strips in depth. Figure 3 shows one such basis function. In earlier work with this
theory | used these same basis functions when | Fourier transformed the whole system over
midpoint and then looked at thin strips for each Fourier component. The difference is that

now | will look at the entire system at once.

The reason for retaining the lateral Fourier components as basis functions in the
analysis is that in our earlier work we gained considerable insight from the transfer function
(the lateral Fourier transform of the impulse response &). Specifically, the response of the
operator is a function of the relationship of the wavelength of anomaly to the effective
cable length. Using strips in depth allows the boundaries between basis functions to fall
along layer boundaries. This is desirable when | consider depth resolution. Furthermore, the

strips also form an orthogonal set, which simplifies the computations.

In using laterally sinusoidal basis functions one must decide on a highest spatial fre-
quency to use. In this study, | use the width of a Fresnel zone as my guideline. Specifically,
| make the maximum lateral wavelength be equal to the width of a Fresnel zone at the bot-
tom of the model. More properly, this maximum should be a function of depth. That is, allow
very short wavelengths up in the shallow portion then gradually bring down the maximum as

depth increases.
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FIG. 3. Basis function at depth z;, and thickness Azg,. In the lateral direction it is a sine
with period equal to 1/3 the width of the model.

In the first part of this paper | consider what can be learned about the overlying
laterally variable velocities from the stacking velocities determined from one reflector. The

model is thus the following:

depth of reflector = 5000 ft.

width of model = 25600 ft.

cable length = 4800 ft

maximum k,, = 24 --> shortest wavelength = 1066 ft.
number of anomalous depths = 10, each 500 ft thick.

stacking slownesses recorded at 64 midpoints

Thus a vector in the data space has 64 elements. A model space vector has (2x24-1)x10
=470 elements, one for each basis function. The factor of 2 enters because for each fre-
quency of basis function there is a sine and a cosine. Thus the dimensions of the matrix G
are 64 by 470.

Model space eigenvectors

The resolution of a particular component of the interval velocity model is related to how
strongly that component affects the data. Components which have little or no effect on the

data will be poorly resolved, whereas those which most affect the data will be best

SEP-38



Toldi 94 resolution of interval velocities

R |\
. ' \ _%
| )
0 5 10 15 c0 25 1) =0 v
midpoint in 1000 ft

L
SR | |
0 S 10 15 c0 25

T ¥ T T
20 0 2'0- D~

midpoint in 1000 ft

FIG. 4. Model space eigenvectors. Each one is a sinusoid laterally, with the vertical distribu-
tion of amplitude shown at right.

resolved. The singular value decomposition (SVD) of & ( see Strang, 1980, Akl and Richards,
1980) is particularly useful in the study of resolution, because it allows one to directly

examine how well each component of the model can be determined.

The singular value decomposition of the matrix G leads to:
G = UAV (7)

where U is the matrix of data space eigenvectors, V the matrix of model space eigenvec-

tors, and A a matrix with entries ( the eigenvalues) along the diagonal. Note that these
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transfer function
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FIG. 6. Transfer function. The horizontal coordinate has been normalized in such a way that
the scale now refers to the number of wavelengths per effective cable length.

eigenvalues are actually the eigenvalues of the matrix G!'G. Shown in figure 4 are two of
the model space eigenvectors. Not surprisingly, they are lateral sinusoids with amplitude
modulated in depth. At the right of figure 4 is a vertical slice through each eigenvector. The

vertical slices emphasizes the amplitude as a function of depth.

The amplitude distribution shown in the vertical slices can be best understood with the
help of the transfer function shown in figure 5. The horizontal scale is the midpoint
wavenumber axis, normalized in such a way that the units are wavelengths of anomaly per
effective cable length. For example, the response at £k = 1, is the stacking slowness
response to an interval slowness anomaly with wavelength equal to the effective cable

length.

Suppose that the wavelength of the anomaly in the earth is fixed at a particular value,
say 1 cable length. Thus, the response to an anomaly at the surface of wavelength one
cable length will be -4 (i.e. the response at ¥k = 1). Then as the depth of the anomaly
increases, the effective cable length will decrease. The corresponding response can be
found by moving back along the & axis (towards the origin) an appropriate amount. As the

depth of anomaly approaches the depth of the reflector, the response will approach the
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response at k = O. This is due to the fact that when the effective cable length gets very

small, every frequency starts to look like the zero frequency.

Now return to the vertical slices of figure 4. Each of these curves is just the appropri-
ate portion of the transfer function: each one starts at the surface with a response deter-
mined by the number of wavelengths per actual cable length, then moves back towards the

response at zero frequency.

Eigenvalues

Now | would like to turn my attention to the eigenvalues. The magnitude of the eigen-
value associated with each of the eigenvectors described in the last section is a measure
of how strongly that component affects the data. Because the smaller dimension of the

matrix G in equation 7 is 64, one would expect at most 64 non-zero eigenvalues.

Figure 6 shows the eigenvalues, plotted in order of decreasing size. Because the sine
and the cosine of each wavelength are equally well determined, the eigenvalues come in
pairs. Note that there are only 47 non-zero values, corresponding to the 47 sines and
cosines. This limitation occurs because the data space can only contain components that
are linear combinations of the sines and cosines. Note also that the non-zero eigenvalues

range from 1 to 13.
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FIG. 6. Eigenvalues In order of decreasing size.
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FIG. 7. Eigenvalue versus wavenumber of eigenvector. Note that the low wavenumber (i.e.
long wavelength) components are the most poorly determined.

An even more revealing way to look at the eigenvalues is to plot eigenvalue versus
wavenumber of the corresponding eigenvector. Figure 7 makes this comparison. It shows
that the response is fairly flat for the higher wavenumbers, but drops off sharply for the low

wavenumbers.

in particular, the three lowest wavenumbers all have eigenvalue of about 1 - a factor of
10 less than most of the others. The eigenvector with the lowest eigenvalue, is the DC, or
zero frequency component. The next two have wavelengths equal to the width of the entire
model and half the model respectively. The width of the model is about 6 cable lengths.
Thus all three of these poorly determined components have wavelengths of 3 cable lengths

or more.

This result was to be expected from the earlier discussion of the transfer function. Not
only is there a zero in the response at a normalized wavenumber of .1, but the entire
response from about .2 back to the origin is weak (see figure 5). Thus all wavelengths of
about 5 effective cable lengths or greater are weakly determined. The component with
wavelength equal to 3 cable lengths has, over most of its depth range, an effective cable

length of 5 or greater, and is therefore weakly determined.

A physical reason for this is that the linear filter that we are examining here is like a
second derivative operator with a small DC component added in. The space domain impulse
response (equation 2) is plotted in figure 8. The long wavelength anomalies appear to be

approximately constant within the aperture, and are thereby nearly eliminated by the
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operator. In an earlier paper, we pointed out that the response is non-zero for the zero fre-

quency component; the lesson here is that although it is non-zero, it is very weak.

Impulse response

-48 -24 0 24 48
midpoint

FIG. 8. Space domain impulse response of the filter. Appearance is that of a second deriva-
tive operator.

The problems with determining the low frequencies should, however, not cause too much
concern. After all, this is a perturbation method: in applying it one is looking for the
anomalous interval velocity distribution, based on some underlying background distribution.
These long wavelength velocity variations belong most naturally in the background distribu-

tion.

Incorporating lateral variations into the background distribution may at first seem trou-
blesome, because the entire development assumed a constant, or at most depth-variable
background velocity. But notice that the velocity does not enter at all into the impulse
response of equation 2. Thus the background velocity could just as well be required to be

laterally constant over an effective cable length.

A glance at the transfer function of figure 5 shows that there are zeroes at regular
intervals, not only near the origin. Why don't these also provide problems? Because the
slope of the curve is fairly steep at the later zero-crossings, a zero will appear only at cer-
tain isolated combinations of frequency, depth of anomaly and depth of reflector. Further-
more, because the zero will show up at certain combinations of wavelength and effective

cable length, it will show up at different wavelengths for different depths. This is quite
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unlike the long wavelength case, where the same weak response is seen at all depths.

Depth resolution

In the final part of this paper | would like to turn to the question of depth resolution. A
useful indicator of resolution is the projection matrix vaf,, where V,, is the matrix of model
space eigenVectors that have non-zero eigenvalues, i.e. the principal part of the model
space. If there were no model null space, Vp\l; would be a diagonal matrix. Instead, it has

some spread about the diagonal.

Because of the non-local nature of my basis functions, looking at a row of VPV}, does
not provide the resolution information that | seek. It would provide a measure of resolution in
Fourier space. | would rather look specifically in the space domain. Thus, in the examples

that follow, | look at the effect of Vp V}‘, upon a space domain impulse in my model.

Recall that the model consists of a series of 10 thin strips of thickness 500 feet. The
reflector is at a depth of 5000 feet, and the cable length is 4800 feet. Although the full

width of the model is 26000 feet, the figures that follow will show only the central portion.

Each curve of figure 9a shows the interval velocity distribution in horizontal strip. Thus,
Figure 9a shows an impuise of anomalous interval velocity in the first depth strip (i.e. at
depth 250 feet) at midpoint 13. Note that it is not a true impulse, but rather the closest

thing to an impulse possible within the space spanned by the basis functions.

Figure 9b shows the results for the same spike, only now projected onto Vp space.
Clearly the spike has been smeared in depth, although notice that the result does have its
maximum amplitude at the surface and decays with depth. The main central peak seems to
have decayed by a depth of about 2000 feet. The projection onto Vp space has caused
certain wavelengths to be strongly enhanced, and others entirely eliminated. Thus the

sidelobes are quite noticeable.

Figure 10 shows the results for an impuise at the same midpoint coordinate, but now at
a depth of 2260 feet. The impulse has clearly been smeared over at least five depth strips
(2500 feet). The important feature is that it is still recognizable as having been at a depth
of approximately 3000 feet. Thus, although the resolution is imperfect, some depth resolu-
tion within the layer is possible. In particular, we could clearly discriminate between the

cases shown in figures 9 and 10.

Figure 11 shows the results for an impulse directly above the reflector. The original
location of the impulse is not even recognizable. For an anomaly on top of the reflector, the

effective cable length is nearly zero. Thus all components of the anomaly have the weak
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FIG. 9. a) Impulse at midpoint=13000 ft. and depth=250 ft. Only the central portion of the
model is shown. b) Impulse projected onto V, space.

low frequency response.

Offset ranges

In a paper in the last report, | discussed the possible benefits of using stacking veloci-
ties determined over independent ranges of offsets. This was based on the suggestion by
Shuki Ronen, that taking a couple of ranges might greatly improve the vertical resolution.

The basic idea is that the zeroes of the transfer functions fall at different frequencies for
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FIG. 10. Impulse at 2250 feet projected onto V, space.
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Impulse directly above reflector (i.e. at 4750 feet) projected onto Vp space.

different offset ranges. Thus the model space has a much smaller null space.

The methods of this paper are ideal for testing the offset range idea. Using a model

similar to the one that | have used so far, | derived the matrix G, for the case of two offset

ranges ( 0-3200 feet and 3200-4800 feet). For ease of computation, | decreased the

number of depth strips from 10 to 5, thereby increasing their thickness from 500 feet to
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1000 feet. To make a fair comparison, | also reran the full offset range example with this

new model.

Figures 12a through 12e show the results of projecting onto V, space for the single
and double offset ranges. Shown are the results for impulses at depths of 500, 1500,
2500, 3500 and 4500 feet. The resolution offered by the offset ranges is strikingly better
for the shallow impulses (figures 12a through 12c). For the deeper impulses, (figures 12d
and 12e), the results are more similar, probably because of the short effective cable lengths

involved at those depths.

Conclusions

In this paper | have examined the limits on the vertical and horizontal resolution of
interval velocities as derived from stacking velocities. This study has shown that useful
information about the depth of interval velocity anomalies is available from stacking veloci-

ties. This was even true in the extreme case of the single reflector.

Problems do arise with long-wavelength lateral variations in interval velocity. These
long wavelengths would best be incorporated into the assumed background distribution. Only

when the noise level is very low should they be allowed to enter into the calculations.

Finally, a method that determines stacking velocities over independent ranges of
offsets seems particularly interesting. With only two offset ranges the method provided

considerably better vertical and lateral resolution than did the standard full offset method.

REFERENCES

Aki, K., and Richards, P., Quantitative seismology: San Francisco, W.H Freeman, 1980.
Rocca, F. and Toldi, J., 1982, Lateral velocity anomalies: SEP-32, p.1-13.

Strang, G., Linear Algebra and its applications: Academic Press, 1980

Toldi, J., 1983, Lateral velocity anomalies - model study: SEP-35, p.3-17.

Toldi, J., 1983, The linear stacking slowness method for a field dataset: SEP-37, p.17-26.

SEP-38



Toldi 103 resolution of interval velocities

a a
. 10 =1
<] ey
g'-\/’\ /\_/\ /“\_/ gm_/\aAV\,A\/\
m | T —l \_ c f_\_/'\__\/‘_/—\_/_\
£ \_/ \\./— s
£ L% //\\ A "g ~_\‘/\\—d7w-_/"\_/
g'cr ‘v/ \\_4/_ o T " |
o 10 11 12 13 14 15 16 17 ¢ 10 1 12 13 14 15 16 17
midpoint in 1000 f1t midpoint in 1000 f1
b b
N . 104
- s :
A o
£ \'/\\/ T £ TN \/\\/\
- m-/ \/ - -
£ TN T - L~
o1 \—-/ \_/ o] ~— v/\J N
9 10 11 . 13. 1.3 14 18 16 17 ] 10 11 12 13 14 15 16 17
midpoint in 1000 f1 midpoint in 1000 f1
c [+
. 104 . 104
< o < -
N AV AN g A
;m'——\/\ /\_’_ Em v—\_/\ /\_/1\__
o N
g \,/\\//-\\//\1\/ £ /\,/\/\/\J'\.
[-% O1
9 10 11 12 13 14 15 16 17 ) 10 1 12 13 14 15 16 17
midpoint in 1000 ft wmidpoint in 1000 ft

FIG. 12. Full offset range, left, versus two independent offset ranges, right. The impulses
are at depths, a) 500 feet, b) 1600 feet, c) 2500 feet
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FIG. 12. Full offset range, left, versus two independent offset ranges, right. The impuises
are at depths, d) 3500 feet, b) 4500 feet

SEP-38



