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Offset-dependent near-surface velocity corrections

John Toldi

Introduction

Seismic velocities in the near surface often have extremely strong lateral variation.
Such a zone of heterogeneous material greatly corrupts the images of all the underlying
reflectors. Although one can't actually remove this heterogeneous material, one can remove

its effects from the data through a process of downward continuation.

Downward continuation of the seismic experiment through the heterogeneous near sur-
face zone forms the basis of all near surface velocity correction and estimation methods. In
using this process, one simulates the seismic data that would have been recorded, had the
seismic experiment been conducted from a datum beneath the heterogeneous zone. Some
methods follow this downward continuation with an upward continuation through a constant
velocity medium. The corrections then depend only on the difference between the near-
surface velocity and the replacement velocity. This results in smaller corrections than for

the simple downward continuation.

Assumptions about the near-surface velocities and the geometry of the reflectors can
simplify the downward and upward continuation. The standard assumption is that energy in
the near-surface travels along vertical rays. Downward and upward continuation move
energy along these vertical rays and therefore cause simple static time shifts to the data.
The magnitude of the shift for each trace is the sum of the static shifts attributable to the
corresponding shot and geophone. Note that no energy moves from one trace to another;

making the corrections is a single-trace process.

The vertical raypath assumption is often a reasonable one. Snell's law tells us that as
long as the near-surface velocities are much slower than those below, the rays in the near-
surface will be nearly vertical. They will also be nearly vertical when the reflectors are flat

and the offset angles are not too large.
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There are also cases where the raypaths are clearly not vertical in the near surface.
Only for a near-surface velocity of zero would the near-surface rays be strictly vertical. In
the arctic regions, permafrost conditions provide an anomalously high velocity, laterally vari-
able near-surface. Rays encountering this near surface will actually refract away from vert-

ical.

In this paper | examine how the vertical raypath assumption can be relaxed. | begin by
looking at near-surface corrections from the point of view of wave theory. The multi-
channel nature of the corrections is emphasized: some energy naturally moves from one
trace to another when we downward or upward continue through the near-surface. Only in

an zero-thickness, zero-velocity near surface would the energy stay on one trace.

| next assume the point of view of ray theory. In this view, the corrections are seen to
move each point of the input data to a different time and horizontal position. Again, only
when incidence is vertical is the change in lateral position zero, and the time shift constant
for an entire trace. One can, however, adjust the time corrections in a way that minimizes
the effect of the lateral motion. This final approximation leads to a method in which making

near-surface corrections is a time-varying, single-trace process.

In the first two parts of this paper it is assumed that the near-surface velocities are
known. Velocities can sometimes be determined through refraction studies, or, in the case of
buried sources, from uphole times. Even then, the velocity information is often inexact or
incomplete. Usually, then, one must try to estimate the near-surface velocities from the
reflection times themselves. The final part of the paper discusses means of incorporating

offset-dependent corrections into near-surface velocity estimation.

Experiment sinking - Wave theory

The basic process of correcting for near-surface velocity variations involves downward
or upward continuing the shots or geophones through the near-surface zone. | will begin by
looking at one step of the overall process: the downward continuation of the geophones.
The shots are fixed at the surface, then the wavefield is reconstructed as if the geophones

had been buried beneath the laterally variable near-surface.

This process of downward continuation is based on the diffraction model of figure 1. As
the waves come up to the surface, each point at the datum acts as a secondary source to
send the energy radiating upward through the near-surface. The wavefronts in figure 1 are

irregularly shaped to emphasize the lateral variability of the near-surface velocities.

This figure shows that the downward continuation clearly will move energy not only in

time within the common shot gather, but also from one trace to another. Only for vertically
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FIG. 1. A diffraction model for near surface propagation. Each point on the datum acted as a
secondary source, sending waves upward through the near-surface. Every geophone within
the common shot gather received some energy from this secondary source.

incident plane waves would there be no lateral motion. This diffraction model is theoretically
correct, but takes no particular account of the fact that one is trying to undo only the last
bit of propagation. The near-surface layer is thin enough that most of the geophones
receive horizontally propagating waves from the secondary source. Because the contribu-
tion from the energy travelling nearly horizontally in the near-surface is relatively unimpor-
tant, the secondary source shown in figure 1 will affect only a small range of points on the

surface.

Although the downward continuation of the geophones will move energy from one trace
to another, the lateral motion will not be great. That is, for the near-surface corrections, the
downward continuation is a very local operation. This local quality could be used to advan-
tage by a finite difference method. A local differencing scheme could be used for the lateral
derivatives, then only a few steps in depth taken. Energy would thus be moved across only

a couple of traces.

A ray-theory method of making near-surface corrections

Another way to exploit the local nature of the downward continuation is to use a ray
method. According to ray theory, the downward continuation moves the energy back along
the rays that carried it up to the surface. Thus, the immediate problem becomes one of
determining those raypaths. As will be discussed further, determining the raypaths requires
assuming a model of the velocity distribution and geometry of reflectors below the datum. A
main advantage of the wave-equation method just discussed is that it requires no such
assumptions: the only required input are the data and an estimate of the near-surface

model.
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| once again begin the discussion by looking at the downward continuation of the geo-
phones. Shown in figure 2 is a ray arriving at the geophone at an angle 7g» having refracted
from 7., at depth Az. Each data point involving this geophone, P(s,g,t,2 =0), will move to a
new point, P(s,g’,t’,z=dz). Note that the shot coordinate remains the same: one holds the

shots fixed in this process, exactly as in the wave-theory development.

FIG. 2. Ray arriving at the geophone at an angle v,, having refracted from y,’, at depth Az.

From figure 2,

Ag = g—g~ = Az tany, (1)

— 44— —Az -1
R [cos, ] (2)
As = s—-s° = 0 (3)

In deriving these equations, | have assumed that a ray in the near-surface is affected
by only one velocity, v,. Az must be small enough to allow Ag to be less than one geophone
interval: otherwise the ray would travel under many geophones, encountering various veloci-
ties along the way. In many cases, this limitation on Az would be too restrictive. For exam-
ple, for making topographic corrections (i.e., corrections designed to eliminate the effects of
topography by reducing it to a flat-datum), the elevations dictate what Az to use. Further-

more, because rays actually bend towards horizontal when they encounter the high velocity
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near surface of permafrost, one should expect fairly large horizontal displacements in such a

case.

One can eliminate the restriction on Az by using a near-surface velocity derived by
averaging the velocity over a suitable range of geophone positions. With this average velo-
city replacing Vg, equations 1,2, and 3 require no restrictions on Az. Using an average velo-

city does carry the implicit assumption that rays follow straight lines in the near surface.

Flat reflectors

To use equations 1,2 and 3, one must know the near-surface propagation angle Yg-
The general correction process described by these equations thus requires a large amount
of ray tracing. By making a flat dip approximation, one can derive a much simpler correction

process.

Begin by rewriting equations 1 and 2 as

—1/2
Ag = Az tany, = Azsiny, [1 —sinz'yg] (4)
_ —Az B -2 PRSPPI
At = Vg [cos'yg] = vy [1 sin 7g] (5)

The near-surface propagation angle 7gcan be expressed in terms of the incident angle, 79'

through Snell's law:

sinyy - sinyg’ (6)
Ug v
Substituting Snell's law into equations 4 and 5 gives
v v 2Y-1/2
— g p g ,
Ag = AzT-smyg 1- [—;}—sm'yy ] ] (7)
v —1/2
At = :QZ_[1 ~ |=Lsiny,’ ] (8)
vg v

The substitutions have allowed Ag and At to be expressed in terms of the angle of
incidence Vg ‘. A flat dip assumption will now allow Yg ‘ to be expressed as a simple function

of offset and time.

Shown in figure 3 is the simplest possible model: flat reflectors with velocity = v con-

stant below the datum. In this case

, T

sinyg” = sinyy’ = siny’ =

vt,

SEP-38



Toldi 44 near-surface correclions

FIG. 3. Raypath for flat reflector, with velocity = v, constant below the datum.

where z, and {, are the offset and time measured from the datum.

Because Az is small, a further simplification is possible. A At of 20 msec is considered
large, whereas the smallest times of interest are several hundred msec. Similarly, the max-

imum Az, which will only occur at large offsets, will be a couple of trace spacings. Thus,

)

The corrections -%t—and A‘f—have the same sign (both negative in figure 3), and are about

the same size. Thus,

d SEPO 2
vt vt
and finally,
. z
siny,” &8 — 9
Vg o (9)

Substituting for siny,’ in equations 7 and 8 gives the following equations for the down-

ward continuation of the geophones:

v v 2Y—-1/2
- g = g
Ag = Az - ~tany, Az " e (10)
—Az -1 —Az Vg =z e
At = [cos'yg] = 1-|—=— 1)
Vg Vg v vt
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and
As = s—s’" =0 (12)

Although equations 10 and 11 are considerably more complicated looking than the simple
expressions of equations 1 and 2, they are much easier to implement. Rather than determin-
ing the propagation angle in the near surface through ray tracing, they express the angie as

a function of time and offset.

The corrections of equations 11 and 12 carry out the downward continuation of the
geophones by stretching the dataset in the time and geophone directions. Because the
shots are handled in an analogous manner, the entire near-surface correction process
involves a series of such stretches along the shot, geophone, and time axes. The output
data points will not generally coincide with the location of input points. Thus one must follow
the stretch with an interpolation between traces and time points to get the data back onto

a regular grid.

Making the corrections thus requires a multi-trace process: to find the corrected data
at an output point, one must interpolate between a set of input points, taken from nearby
traces and times. Thus far, the ray theory corrections show no advantage over those
derived through wave theory. The ray theory has provided interpolation coefficients based
on an assumed subsurface model and the near-surface velocities. In contrast, the wave
theory supplied a set of interpolation coefficients based strictly on the near-surface veloci-
ties. The real benefits of the ray theory approach become apparent only after further

approximations concerning the near-surface raypaths are made.

Near-surface models

So far the discussion has centered on approximations for the subsurface geometry and
velocity model. Now | will add some assumptions about the near-surface raypaths. Once

again | begin by looking at the geophone correction; the shot correction is analogous.

Consider the process in which one downward continues the geophones through the
heterogeneous near surface, then upward continues them through the replacement medium.
The simplest approximation assumes that the rays always travel along the direction given by
siny’; that is, there is no ray bending in the near-surface. This approximation is used com-
monly in tomography: calculate the time correction by following the unperturbed path,
encountering the anomalous material along the way. Because of the assumption of no ray
bending, the Ag from the downgoing path is eliminated when the ray comes back up. Thus

the entire correction is
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at = Bz (1 _ 1 (13)
veosy’ |v v,
Ag = O (14)

This result provides the main motivation for following the downward continuation with an
upward continuation: because Ag is zero, the corrections are single trace processes. Note
also that At in equation 13 depends only on the difference between the near surface velo-
city Vg and the replacement velocity v. Thus the upward continuation has reduced the

correction to a residual effect: if v, = v, no correction is required.

Although the simplifications offered by equations 13 and 14 are very attractive, having
to make the assumption of no ray bending in the near surface is not very satisfying. After
all, statics is not a bad model, and it predicts that all rays bend to the vertical in the near
surface. For the high-velocity near surface of permafrost, equations 13 and 14 do provide
more reasonable corrections than static shifts. On the other hand, for the more common
case of a low-velocity near surface, they overestimate the importance of the offset varia-

tion.

A better approximation assumes that the rays travel through the near-surface in a
direction predicted by some assumed background velocity v,. Note that this contains the
previous approximation as the special case of v = v. On the downward path the rays
encounter the anomalous near surface velocity Ug, ON the way back up, the replacement
velocity v. Once again, the Ag accumulated on the downward path will be subtracted on the

upward path, so only a time correction is left:

= fz 1] (15)
cosy, |vg v
Ag = O (16)

The assumption that y, is determined by the background velocity v,, combines with

Snell's law to give:

sinyy sinyg”
Vg - v

a7

Substituting for cosy, in equation 15 then leads to

v 2Y—1/2
s in'y'] ] [—1 —1—] (18)
v 'Ug v

The analogous treatment of the shot corrections leads to:

At = Az {1—
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v 2Y—-1t/2
At = Az [1—[-isin7’] ] [1 - L] (19)
v Vg v

The correction method described by equations 18 and 19 has several desirable

features. First, the corrections are single trace processes, so the correction for each trace

is the simple sum of the A¢ in equations 18 and 19. Thus, for any trace with shot coordinate

v 2y-1/2
1—[—30 in'y'] ] {—1—-+ 1 _ % (20)
v Vg W v

g

s and geophone coordinate g,

At = Az

Second, because the velocity appearing inside the square root in equations 18,19, and 20 is
Vg, the background velocity determines the near-surface raypath. Setting v, = O in equa-

tion 20 leads to the static shifting case:

Thus, a single parameter leads one from the time dependent to the static shift corrections.
Finally, the method has the property that the size of the corrections depends on the differ-
ence between the near-surface velocities and the replacement velocity. This is certainly a
desirable property: if these velocities are the same one would like to leave the data

untouched.

Source of velocity information

So far, this paper has discussed methods of correcting for near-surface velocity varia-
tions. It is natural to ask where this near-surface velocity information might come from.
Some velocity information comes from use of the refractions, or in the case of a buried
source, from uphole times. For these cases, one could use the methods described in this

paper directly.

In many cases, however, this independent information is either unavailable or incom-
plete. Then one must try to estimate the velocities directly from the seismic reflection
times. Typically, one begins by using so-called field statics, which correct for the effects of
topography and known near-surface velocity variations. The remaining near-surface velo-

city effects are estimated and applied as residual statics.
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Estimation

The typical statics estimation program cross-correlates traces, then picks the peak of
the cross-correlation function as the measured time shift. This time shift is distributed
among its possible sources, which are typically assumed to be shot and geophone statics,
residual NMO, and dip.

One can generalize the near-surface velocity estimation to encompass non-vertically
propagating rays by applying a simplified version of seismic tomography. Exactly as it is in
statics, the estimation is broken into two parts: picking of time shifts, and inversion of these
time shifts to model parameters. In statics one picks time shifts by cross correlating large
time segments of the data; for tomography the time shifts must be picked from each reflec-
tor independently. As a consequence, the program must work on many small time windows of
data.

The second part of the estimation process inverts the time shifts to model parameters,
according to a linear theory. The model used is a simplified version of that of the full seismic
tomography problem: velocity variations are restricted to the near-surface. The linearization
is precisely the one that | used in deriving equations 13 and 20, that is that traveltimes can

be computed along raypaths determined by some background velocity distribution.

Shuki Ronen and Dan Rothman discuss elsewhere in this report an alternate approach to
the statics problem. Rather than picking times and formally inverting for the model esti-
mates, they estimate the statics by performing repeated forward modeling, and then look for
the set of estimates that maximizes the power in a common midpoint stack. That is, they
correct the data using an estimate of the velocity, then see if this correction improves the
stack. This approach allows the velocities to be estimated directly from the data, rather
than through the intermediary of picked traveltimes. In the remainder of this section | will
examine how offset-dependent near surface corrections could be incorporated into the

stack-optimization approach.

The stack optimization approach to near-surface velocity analysis requires a fast for-
ward modeling procedure. And, one must be able to easily test whether a correction has
improved the stack. Thus the estimation should be done after NMO: one would not want to
require NMO after each try at a static shift. The emphasis in estimation must thus be on
speed and simplicity, rather than on absolute accuracy. A single trace process is preferable
to a multi-trace process. Similarly, a time-independent process is preferable to a time-

dependent process.

Static shifts are, of course, time-independent, single-trace processes. So, the simplest

approach would be to estimate with static shifts, but use in the estimation only those parts
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of the data where the vertical propagation model is satisfied: reflections from deep, rela-
tively flat reflectors. In most cases this is possible. Only in those cases such as data with
a high velocity near-surface or no deep reflectors, then, is there reason to not use static

shifts in the estimation.

A wave-theory approach has one advantage: it requires no knowledge of the reflector
geometry in order to make accurate corrections. However, as part of an estimation pro-
cedure, this advantage is overshadowed by its chief disadvantage: it is a multi-trace pro-
cess. Furthermore, it is difficult to interchange with NMO. Although one should theoretically
not interchange the order of near-surface corrections with NMO ( because they don't com-
mute), one could approximate this by using stretched time in the finite difference operator.

The result is that one must convolve with a time-dependent operator.

The simplified ray approach of equation 20 seems to be a better candidate: it is a sin-
gle trace process, albeit a time-dependent one. Although interchanging it with NMO would
introduce some error in the corrections (once again the operations don't commute), the
essential nature of the corrections would remain the same: single trace, time-dependent
corrections. By considering data within time windows, one could reduce the corrections to

offset dependent time shifts.

Practicality Accuracy
single time non-vertical dipping
trace independent raypaths reflectors
statics yes yes no no
rays yes/no no yes no
wave eq. no yes yes yes

TABLE 4. Comparison of near-surface correction methods
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Conclusions

Static shifts form the basis for the conventional method of near-surface velocity
correction. In this paper, | have looked at correction methods that relax the underlying
assumption of vertical propagation in the near surface. Figure 4 summarizes the tradeoffs

between accuracy and practicality for the different correction methods.

Because they are the only single-trace time-independent process, statics are certainly
the most practical of the methods. On the other hand, they are accurate only when the
vertical raypath assumption is valid. This assumption is often a good one. There are impor-
tant cases, however, such as permafrost or correction for a relatively thick near surface,
where the assumption is clearly not valid. In these cases, one of the other methods should

be considered.

Both the wave equation and the ray methods presented in this paper are more accurate
than static shifts. The wave equation method is particularly accurate, in that it requires no
assumed model below the near surface. Both methods are less practical than static shifts,
the wave-equation method by being a multi-trace process, the ray method by being a time
dependent process. Because time stretching is easier to accomplish than multi-trace convo-
lution, the ray method seems to have the edge in practicality over the wave equation

method.

In the final part of the paper, | looked at near-surface velocity estimation. In estima-
tion, accuracy must be sacrificed for practicality. By virtue of being the only single-trace,
time-independent corrections, static shifts are overwhelmingly the best choice. Only when
the vertical raypath assumption is violated in all parts of the data should other estimation
methods be tried. Because it is a single-trace process, the simplified ray method seems to

be the best alternative for estimation procedures.
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