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Abstract

Several data processing problems in reflection seismology are cast as general inverse
problems, and are solved by maximizing the posterior probability of a model, given the
observed data and a prior probability function for the model. Both this Bayesian solution and
the computational techniques employed may be generally applicable: no assumptions of local
linearity or Gaussian statistics are necessary. The only restriction is that the conditional
probabilities of the model parameters exhibit local dependencies, or, specifically, that the
model be expressible as a stochastic process called a Markov random field. Maximizing
posterior probabilities for this relatively unrestricted class of problems is usually considered
to be computationally intractable due to the existence of many local extrema. By making an
analogy with statistical physics, however, it is shown that many large-scale nonlinear
inverse problems that exhibit these local characteristics may be solved by a method that
can yield solutions superior to previous efforts. This inversion procedure is successfully
applied to the problem of residual statics estimation. The well-known problem of "cycle-
skipping' is effectively attacked because no assumptions of local linearity are made.

Further applications and extensions of the method are proposed.

introduction

Many of the problems encountered in geophysical data processing are essentially prob-
lems of data inversion: data are collected on the Earth's surface, and we try to formulate a
model of the Earth's interior, given these surface observations. The problem may be
approached deterministically, in which we consider observed data to be error free, and
implement a procedure which inverts this "exact’ data to obtain a solution. Alternatively, we

may view the data and the model as stochastic processes, and invert the observed data to
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obtain the most probable solution, or, if possible, a probability distribution for the model.

The inversion process is viewed here from a probabilistic perspective. The proposed
method incorporates a meaningful joint prior probability distribution for the model, from which
the conditional posterior probability of the model, given the observed data, is derived. The
posterior distribution is maximized to obtain the most probable model. This is a form of Baye-

sian estimation known as marimum a posteriori estimation.

The solution does not rely on the usual assumptions of local linearity and/or Gaussian
noise. The method does, however, require that the model be expressible as a stochastic
process known as a Markov random field. This limits us to problems in which the condi-
tional probabilities of parameters exhibit local dependencies, but this is not a stringent res-

triction; many inverse problems in reflection seismology have this characteristic.

The maximization of posterior probabilities for this relatively unrestricted class of prob-
lems is a notoriously difficult optimization problem because of the existence of many local
extrema. Following the recent work of Geman and Geman (1983) in image restoration, this
problem is surmounted by first observing the equivalence of Markov random fields and Gibbs
distributions. [Gibbs (or canonical) distributions usually occur in the description of systems
in equilibrium in statistical physics.] The Markov-Gibbs equivalence leads easily to the con-
clusion that the posterior distribution of the model is also Gibbsian. This posterior probability
Is then maximized by employing a method of stochastic relaxation recently devised by Kirk-
patrick et al (1983). This optimization technique implicitly assumes that the underlying pro-
bability distribution of the model is Gibbs, and effectively attacks the difficult problem of

local extrema.

An application to the problem of residual statics estimation is illustrated. The statics
solution is obtained without making any assumption of local linearity or Gaussian errors. Thus
the solution does not suffer from the well-known problem of ''cycle-skips'' that conventional

solutions exhibit.

Further theoretical extensions and applications of these methods in seismic data pro-
cessing are proposed. Particular attention is given to the problems of frequency-dependent

surface-consistent statics and missing data restoration.

The inverse problem

Consider a physical system (for example, the Earth) that is parameterized by a model, a
finite set of parameters M = {M,, . . . , M} in the s-dimensional model space. An experi-
ment performed in this physical system produces a finite set of data D = {D,, ..., D.} in

the r-dimensional data space. In our notation the upper-case roman letters are (random)
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variables which take on specific valuesm = {m,, ... ,m,Jord = {d,, ... K d}

Consider G to be some (nonlinear) function of the model m that describes the outcome

of the experiment. Then we may represent the observed data d as
d = G(m) +n , (1)

where n = {n,, ..., n,} is a realization of the random noise N, assumed to be independent,
identically distributed, and independent of m. This equation represents the most ambitious
of geophysical inverse problems - the determination of the entire underlying model given the
observed data. Smaller (though still important) problems entail solving for a more limited
model, a subset M of m. For example, M could be the residual static time shifts associated
with the near-surface, while m would include the entire velocity and reflectivity structure of
a survey area. If we let m be the unknown part of the model, and let fii be the remainder of

the model that is assumed known, we may then rewrite (1) as
d = G(m;M)+n . {(1a)

This second equation Is more realistic, but for clarity we usually assume the form (1)

throughout our discussion.

This paper primarily addresses the problem of inverting (1) when G is nonlinear and/or n
is non-Gaussian (though the derived solution is equally valid for linear, Gaussian problems).
Existing techniques usually rely on a linearization of G and the assumption of Gaussian
statistics. Linearization is accomplished by providing an initial guess of m that is sufficiently
close to the correct solution. The remaining perturbation of the model is then linearly related
to the change in d due to the initial guess of m. Though often successful, these methods
have serious drawbacks, most notably the necessity of a reasonable initial guess. Good
accounts of linearized inversion techniques are in Aki and Richards (1980) and Parker
(1977).

Tarantola and Valette (1982) developed an imaginative solution to the inverse problem
(1) that is valid, in principle, for any degree of nonlinearity or any noise statistics. They
stated the inverse problem as the combination of two states of information: the observed
data and an estimate of its errors, along with the theoretical information contained in G and
an estimate of its errors. Their solution is in the form of probability density functions and is
essentially Bayesian in nature, but it reaches beyond Bayesian statistics because it expli-
citly includes both theoretical and observational errors. Their general solution presents a
severe practical problem, however, because it is computationally intractable for problems
with more than a just a few parameters (Rothman, 1983). The presentation here follows the

spirit of the work of Tarantola and Valette, but with the additional attraction of
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computability. A significant prior probability function for the model is specified, and the
posterior probability function is obtained via Bayes' rule. The Bayesian approach presented
here is less general than the solution of Tarantola and Valette (because theoretical errors

are not incorporated), but it leads naturally to an algorithmic solution.

The Bayesian solution

We seek the most probable model, given the observed data and a prior probability dis-

tribution for the model. Thus we maximize the posterior probability

P(D=d|M=m) P(M=m)
P(D=d) ’

PM=m|D=d) = (2)

When the model space is large (as it usually is in reflection seismology) there may be
s = 1000 or more distinct parameters to solve for simultaneously. For nonlinear and/or
non-Gaussian problems, the maximization of (2) then appears to be an overwhelming compu-
tational task. If each parameter may take on one of g states, then there are g°® possible
solutions, making an exhaustive, point-by-point search for the global maximum a computa-
tional impossibility, even for the unlikely case of a binary (¢ = 2) model. Thus conventional
attempts at the maximization of (2) or its equivalent have usually resorted to a linearization
or a restriction to Gaussian errors. The method presented here for the maximization of the
posterior distribution assumes only that the model parameters are related to each other

locally, rather than globally, as described in the next section.

Markov random fields

Stochastic processes that exhibit local interaction are often expressible as Markov
random fields, The fundamental assumption of this paper is that the model M has these
local characteristics. This leads to several significant computational advantages which will
be discussed in detail. In this section, Markov random fields are introduced in the context of

geophysical inversion.

A Markov random field is essentially a multidimensional generalization of a Markov chain.
Recall that a Markov chain is a sequence in which the conditional probability of an event at
time ¢ depends only on the value of the sequence at time £ — 1. Since the event at time t is
independent of all times other than f —1, we may write, for a random sequence
M=§Mg My,.... M4}

P(M;=mt IMt_1=m‘_1, .. ,,M0=m0) = P(M‘ =my IMt_1=mt_1) .
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A simple generalization leads to the consideration of a two-dimensionally indexed model
M = {M;;}. The M; determine a Markov random field if the value of each M;; depends only

on a neighborhood A; of (i,3). A;; might contain only the nearest neighbors:
Ai‘j = i (i+1sj)’ (7'_1),7)3 (7"_7 +1)’ (1'),7 ""1) ; .

The neighborhood structure depends on the physical characteristics of the model; other,
more general neighborhood structures are possible (and will be employed here). A Markov

random field with an arbitrary neighborhood structure A;; is stated as
Pl My =my; | My =myy, (1) #(i,5)] = PLMy=my | My =my,, (kD) €451 . (3a)
it is additionally required that the probability of all models be positive:
P(M=m) > O forall m . (3b)

We shall retain the notion of a two-dimensional model throughout our discussion, though gen-

eralization to higher dimensions is mostly a matter of notation.

The theory of Markov random fields originated with the study of systems in equilibrium
in statistical physics. In the past decade, however, Markov random fields have been used to
model a variety of phenomena in the physical, biological, and social sciences. An excellent
review of the theory, applications, and history of Markov random fields is in the book by
Kinderman and Snell (1980).

Many important problems in reflection seismology exhibit the local neighborhood depen-
dencies characteristic of Markov random fields. In the problem of residual statics estima-
tion, for example, individual parameters are shot and receiver statics, and the "neighbor-
hood" comprises the shot and receiver statics located within a cablelength of each other.
For the model M;; and neighborhood structure A, 1 would index shots and ; would index
recelvers. Since statics are relative time shifts, only the statics within a cablelength of
each other interact in an immediate sense. Indeed, the physical basis for a Markovian model
of statics may be argued from a geologic point of view: the composition of the near-surface
Is the result of localized, spatial interaction due to the effects of erosion and other geologic
activities. The seismic cable then provides a practical limitation for measuring this local
interaction. Another, perhaps more obvious, instance of a Markov random field is the problem
of missing data restoration; here it is the neighboring spatial and temporal points that deter-

mine estimates of missing data.

It is the local nature of Markov random fields that is most important in the inversion
problem. The Markov mode! allows parameters to exhibit significant correlations over much

of the model, but computations are localized and therefore realizable. Before demonstrating
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this, however, we discuss in the next section how the characterization of M in terms of the
Markov conditional probabilities (3a) leads to a simpie expression for the joint prior probabil-

ity distribution of the model.

Markov-Gibbs equivalence

The identification of a model as a Markov random field is based only on the existence of
localized, conditional probabilities. Conditional probabilities alone do not in any obvious way
determine the joint prior probability function P(M = m) needed for obtaining the Bayesian
estimate (2). The existence of a Markov random field according to conditions (3) does,
however, determine a joint probability measure known as a Gibbs distribution (Kinderman
and Snell, 1980, and the references therein). Gibbs (or canonical) distributions arise in sta-
tistical physics in the study of systems in equilibrium. We say that a random field M is Gibbs
if

PM=m) = e T | (4)

E(m) is called the energy, and is the sum of local potentials VAﬂ(m) such that

E(m) = —2 VA‘j(m) . (5)
1.

The V“ij are evaluated over the same neighborhood structure 4;; used to specify the condi-
tional probabilities (3a), i.e., V,,u =O0fori,j £ Ay. T is lemperature and k is Bollzmann's

constant. Z is the normalizing constant

~FE{m)
Z=Ye T , . (6)

called the partilion function. One of the pleasing aspects of the Markov-Gibbs
equivalence is that the purely probabilistic notion of a Markov random field is equated to the
physically based Gibbs distribution. Gibbs models describe the interaction of a macroscopic
system in thermal equilibrium in the same way that spatial Markov models describe local
dependencies. For our present purposes it is important to note that the Gibbs measure (4)
specifies the joint probability distribution (describing large-scale correlations) of the model,

while the conditional probabilities (3a) are generally much less useful.

The Markov-Gibbs equivalence is best intuited in view of the common neighborhood
structure A;. For a Markov random field, the conditional probabilities are stated in terms of

neighborhoods, while for a Gibbs distribution the energy E is the sum of potentials V
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measured over the same neighborhood structure. That a Gibbs distribution implies a Markov
random field is straightforward: the additive nature of the energy function (5) allows the
appropriate cancellations when the conditional probabilities (3a) are expressed. The
specification of a Markov random field does not, however, uniquely determine a Gibbs poten-
tial function except for special cases (Kinderman and Snell, 1980). The potential function is
of paramount importance because it describes how individual parameters interact with each
other; in particular, low energy signifies a preferred model. The correct choice of potential
function is therefore critical for the solution of a geophysical inverse problem. In residual
statics estimation, the potential function will be chosen to be the power in stacked common
midpoint gathers. In the next section we show how decreasing energy (or, for statics,

increasing power) is related to increasing probability.

The Gibbs posterior
We now revise our statement of the posterior probability (2). Assuming that the model
M is a Markov random field, we may write the joint prior probability function for the model as

—E(m)

PM=m) = e T (7

1
V4
where for convenience we set k = 1. The choice of energy function and temperature is of
course important, and will be discussed later in the context of specific applications. OQur
present purpose, however, is to show that the posterior probability (M =m | D = d) is also
a Gibbs distribution (Geman and Geman, 1983). This will lead naturally to the implementation

of a Monte Carlo optimization procedure described by Kirkpatrick et al (1983).

P(D = d) is assumed to be uniformly distributed over the data space, so by substituting
(7) into (2),

1 =E(m)
P(M=m|D=d)=7P(D=d|M=m)e T (8)
where Z is now a new constant. The noise N = {N,, . . . . Ny} is assumed to be indepen-

dent, identically distributed, and independent of the model. The prior distribution of the
noise has little bearing in principle, but for both clarity and generality the distribution of the

noise is assumed to be zero-mean and expressible as the generalized exponential function

_L[M'L]’

P(N=n) « g ?l ¢ (9)

r
where || «||, is the LP norm such that ( || n llp)? = ) nP. Note that if p = 2 the noise is
i
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Gaussian and if p = 1 the noise is exponential. We now solve for the posterior. We rewrite
(8) as

—E(m
P(M=m|D=d)=%—P[D=G(m)+n|M=m]e r (10)
1 —FE(m)
=—Z-P[N=d—G(m)|M=m]e ro, (11
Since the noise is independent of the model,
1 ~F{m)
P(M=m|D=d)=—2—P[N=d—G(m)]e T (12)
and by inserting (9)
(N Llllnllpr
PM=m|D=d) = e T el e (13)

where 7 is again a nhew normalizing constant. The noise term in the exponent is just a con-
stant which may also be absorbed into Z, so

—FE (m)

P(M=m|n=d)=JZ—e T, (14)

establishing that the posterior distribution is also Gibbs with energy function F(m). Geman
and Geman derive some additional results showing that the posterior neighborhood structure
Is slightly modified to include "second-order” neighbors (i.e., neighbors of neighbors). For
computational purposes, however, we assume that the prior and posterior neighborhood

structures are approximately equal.

The model which best fits the data, in the sense of Bayesian inference, is determined
by maximizing (14). This is mazrimum a posteriori estimation. The posterior probability is
maximized when energy is minimized - this is analogous to the situation of thermal equilibrium
in statistical physics, where the most probable molecular configurations occur at the lowest
energies. For the case of residual statics, it will be shown that the most probabie statics
model occurs when the negative stack power is minimized. Maximizing (14) by conventional
gradient techniques is virtually impossible for all but the simplest models, because of the
existence of many local extrema. Recently, however, Kirkpatrick et al (1983) devised a
method of stochastic relaxation that globally maximizes functions of the form (14). Their

method is reviewed in the following section.
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Stochastic relaxation

in many important geophysical problems, the energy function in (14) will be a nonlinear,
highly variable, and possibly non-differentiable function of the model. In residual statics
estimation, for example, the model comprises the surface-consistent time shifts, and energy
is expressed as the power in the stack of time-shifted traces. |f the time shifts are large
relative to the dominant period of the data, or if the signal-to-noise ratio is low, then
extremalization of power is not a straightforward task. Many local extrema of power will
exist, but simply locating a local extremum may cause incorrect alignment of traces - this is

the ""cycle-skipping'' problem. Thus the global extremum must be found.

Kirkpatrick observed that many large-scale optimization problems can be modeled in
analogy with the behavior of macroscopic systems in statistical physics. He noted that the
problem of finding a global extremum when many local extrema exist is akin to the procedure
of chemical annealing. Annealing is the method by which crystals are grown - a substance
is first melted, and then cooled very slowly until the crystal is formed. The cooling schedule
is crucial, because a non-crystalline, metastable glass may form instead. Kirkpatrick called
his optimization algorithm "simulated annealing" - he viewed the occurrence of a crystal as
analogous to finding the global extremum, and the occurrence of a glass as the counterpart

to wrongly selecting a local extremum.

Our characterization of an inverse problem in terms of Markov random fields and Gibbs
distributions lends itself naturally to Kirkpatrick's analogy with statistical physics. "Energy"
corresponds to an objective function (i.e., power) and "annealing” corresponds to lowering
the temperature 7T, causing the largest peak in the posterior probability function (14) to
become progressively more exaggerated. T is expressed in the same units as the objective

function, and it controls the rate of convergence.

Kirkpatrick's technique is essentially a variant of a Monte Carlo procedure due to
Metropolis et al (1953). Metropolis addressed the problem of randomly sampling from a
Gibbs distribution at constant temperature, thereby simulating the behavior of a physical
system in thermal equilibrium. The Metropolis algorithm proceeds as follows. For each ele-
ment M;; of a model M, a random perturbation is made, and the change in energy, AFE, is com-
puted. If AE < 0, the perturbation is accepted. If AFE is positive then the perturbation is
accepted with probability

—AE

———

PAE) = e T . (15)

This conditional acceptance is easily implemented by choosing a random number « uniformly

distributed between 0 and 1. If a = P(AE) then the perturbation is accepted; otherwise
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the existing model is retained. Random perturbation according to these rules eventually
causes the system to reach equilibrium, or a condition of mazximum entropy,’ in which con-

figurations m are realized with the Gibbs probability (14).

Kirkpatrick's optimization technique slowly lowers the temperature T during execution
of the Metropolis algorithm. If the system is cooled sufficiently slowly and equilibrium condi-
tions are maintained, the model eventually converges to a (ground) state of minimum energy,
or maximum a posteriori probability. The essential characteristic of this optimization pro-
cedure is that local extrema may exist, but the algorithm can escape from these local
extrema and find the global extremum. Thus, in the Bayesian estimation problem here, per-
turbations which lower probability are accepted in accordance with (15), but the final result

yields the model associated with mazimum probability.

Application to residual statics

The conventional residual statics model (Wiggins et al, 1976; Taner et al, 1974)
expresses observed static time deviations t;; of normal moveout corrected traces associ-

ated with the ith shot and jth receiver as
by = sg+1 g + ozl . (16)

The unknown surface-consistent time shifts due to near-surface velocity anomalies under-
neath the ith shot and jth receiver are denoted by s; and r;, respectively. The unknown
subsurface-consistent part of the time shift due to variations in geologic structure at the
kth midpoint is given by g,. Finally, the last term represents the component of the time shift
due to residual normal moveout; c; is called the residual normal moveout coefficient, and z;
is the distance between shot i and receiver j. The c, are included in an attempt to account

for the usually imperfect stacking velocities used prior to measuring t,-a-.

Among the many well-known deficiencies of the model (18), we specifically address
only one - the problem of measuring t;;» This is usually performed by crosscorrelating traces
against some reference model. If s; and r; are small relative to the dominant period in the
data and if the signal-to-noise ratio of the data is reasonably good, then the weighted least
squares approach of Wiggins et al is usually successful at solving for the parameters on the
right side of (16). Serious problems may occur, however, when either of these two condi-

tions are not met. The problem is that the measured t;; may be grossly in error - this is the

TGibbs distributions may be derived in statistical physics by maximizing entropy (Reif, 1965). Clearly, the proven
capabilities of maximum entropy estimation technigues (Shore and Johnson, 1980) may yleld much theoretical insight
Into this procedure.
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"cycle-skipping” problem. These errors are highly non-Gaussian, so the least squares
approach may fail severely. Donoho (1979) noted this, and employed methods of robust
estimation that diminished the degrading influence of these non-Gaussian errors on the least

squares solution.

The problem of non-Gaussian errors in tl-j is approached here by skipping the
correlation-time picking step entirely. Let the observed data d be the seismic traces
instead of the time deviations tij. Assume that the entire Earth model, source waveforms,
etc., are known ezcept for the near-surface timing delays. Then if s and r represent the
unknown shot and receiver statics, respectively, and if f represents the known part of the

Earth model, we may write
d = G(s,r;f) +n . (17)

G represents a time shift, and the equation is nonlinear (and potentially highly variable) with
respect to s and r. Note that the traveltime model (16) is a linearization of (17), and thus
suffers the usual problems of linearized, nonlinear inversion; in this instance it is the inability
to handle non-Gaussian errors. Note also that (17) does not contain the subsurface-

consistent terms g, and ¢, - this will be explained shortly.

To justify the application of the Markov-Gibbs model to invert (17), we first make the
following observation. If the traces in a common midpoint gather are identical, except for a
time shift and uncorrelated noise, then the power in the stack of these traces is maximized
when the time shifts are all equal. Thus for a given shot static S;, we seek the shift which
maximizes (with respect to 5;) the power in the stacks of the midpoint gathers associated
with shot i. The value for s; depends of course on the other shot and receiver statics
associated with the remaining traces in this set of midpoint gathers, and maximization of
stack power depends only on these neighboring statics in an immediate sense. Note that
the estimates of neighboring statics interact with one another, so in general the s; and T
cannot be systematically chosen so that power is always maximized in their respective mid-
point gathers - this could lead to a local maximum with respect to power (the "cycle-
skipping” problem). However, these nearby statics make up "neighborhoods’ of s; and r; in
the sense of a Markov random field - the range of s; and 7; in the neighborhood is fixed by
the seismic cablelength. Thus, given the Markov random field, we need only choose an
energy function in order to specify the joint Gibbs distribution for the statics. We choose to
equate local stack power with the potential function V in (5), and seek the maximum power

that is attainable with surface-consistent statics corrections.

The optimization problem is formally stated as follows. Let each moveout-corrected

seismic trace be characterized according to the shot i from which the source energy
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originated, the receiver j at which the wavefield was recorded, the midpoint y (the point
midway between shot i and receiver j), and the offset h (the distance between the shot
and receiver). The data are expressed as d,(f —siq.») —Tj(.0)), Where t is the true
reflection time (assuming no static delay). The subscripts i and j are both functions of y
and h. Stacking is expressed as a sum over h for each y. Each shot static s; influences

(in an immediate sense) the stack power of only a subset Y..,‘, of all midpoints y; likewise
each receiver static 7 affects a subset Y,.j. The portion of the stack power influenced by

shot static s; is given by

Vo () = ) E‘:[g duh(t"si(u.h)‘rj(y.h))r . (18a)

Ve,

Similarly, the portion of the stack power influenced by receiver static Tj is

VEY,

V() = ) X‘I[Zh) d'yh(t“si(y.n)*"j(y.n))r . (18b)
]

Note that, due to the restriction on y, i and j vary essentially over a cablelength. To max-
Imize the total power in the stack, we seek the s and r that minimize the energy in equation

(8), now restated as

(s,1) - PV (s,0) . (19)

i -
J

E(s,r) = -—Z‘Vs

Use of the Kirkpatrick algorithm to minimize (19) necessitates continual perturbations of

each s; and 7;, each time computing Vsri or V,j.

As noted earlier, the subsurface-consistent terms g, and c, are not included in this
approach. The g, represent timing differences due to geologic variation from midpoint to
midpoint, and are useful only with models like (16) that depend on measurements of trace-
to-trace time deviations. The power computations in (18a,b) are performed within midpoint
gathers, however, where the g, are constant, and therefore irrelevant. This is an important
point. The statics solution presented here does notl attempt a decomposition of structural
and near-surface variations; thus the algorithm exhibits no inherent ambiguity between
structure and statics. (Poorly determined long wavelength statics, however, may still be
confused with structural variations). Residual normal moveout, although ignored, is still an
important parameter. Estimation of the ¢, in conjunction with a function like (18) is cumber-
some, however., It is of course possible, but experience with conventional residual statics
estimation shows that the residual normal moveout term is largely inconsequential. One rea-
son is that the ¢, represent time-averaged residual moveout, since calculations are usually

performed over a window containing several reflections.
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implementation

The relaxation method is an iterative technique which continually creates samples from
a Gibbs distribution while slowly decreasing the temperature parameter 7. A convenient,
data-dependent method for choosing the initial temperature Ty is to compare the average
input stack power Po with the average stack power p. computed after applying uniformly
random shot and receiver statics. For a given g8, T, is then chosen such that

2o P
B=e 7o |

g determines the degree of "melting'’ prior to "annealing.” It is chosen between 0 and 1 and
represents the probability of accepting a decrease in power by the amount py - p, [see
equation (16)]. Cooling then proceeds in any of a number of ways. The most consistently
good results were attained with a logarithmic cooling function Ty = To/logk, where k
represents the number of complete sweeps over the parameter space (one sweep incor-
porates one attempted perturbation for each shot and receiver static). Geman and Geman
(1983) proved convergence for a cooling function of this form. Practically, the most impor-
tant aspect of any cooling function is that it be slow, especially near the "critical tempera-
tures” where convergence is rapid. The successful choice of an annealing schedule requires
experience; ideally, the procedure would be interactive. | was usually able to produce a
successful result after two or three trials. | found it best to set 8 very close to 1 for the
initlal run. Then, after a preliminary determination of the critical temperatures for the data,
Ty may be chosen much lower, in addition to choosing a k such that 7, = To/loglky + k). A

large k, substantially decreases the cooling rate.

Once started, the next question to resolve is when to stop. In my tests | collected run
statistics every iteration, which is defined here to be twenty sweeps (twenty attempted
perturbations per parameter). The algorithm then simply stops after an iteration in which

few or no perturbations are permitted.

Synthetic data example - residual statics

The Markov-Gibbs assumption and the Kirkpatrick relaxation algorithm were tested on
synthetic data that exhibit a severe surface-consistent statics problem. The data simulate
the results of a survey conducted with a 12-trace cable, off-end shooting with a two
receiver group gap, and with shots and receiver groups evenly spaced. There are 100 6-
fold common midpoint gathers. The sampling rate is 4 msec. and the data contain frequen-
cies between 5 and 60 Hz. The data, without statics, are shown in Figures 1a and 1b. Fig-

ure 1a shows four representative "moveout-corrected” common midpoint gathers, and Figure
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1b is the common midpoint stack. The cablelength extends over 24 stacked traces. The
signal-to-noise ratio (the total power of the signal divided by the total power of the noise)
after stack is approximately 2.0. The entire dataset is scaled to an rms amplitude of 100.
The 'signal" is identical for all traces, except for the bulk time shift simulating a fault.

These data represent the desired solution for the test illustrated in the following figures.

Figure 2 shows the statics model for shots and receivers; this model is a sample from a
Markov random field. (The two one-dimensional functions s and r form the "random field" for
the statics model). Using the data of Figure 1, the Markov random field was generated by
executing the Metropolis algorithm at a high temperature (so that more than 90% of all per-
turbations were accepted) and stopping after one iteration. The perturbations were limited
to vary between +40 msec., in 4 msec. increments. A full range of statics was attained, so

the combined effect of shot and receiver statics varies over +80 msec.

Figure 3a shows the same common midpoint gathers of Figure 1a, but now with the
traces shifted in accordance with the statics model in Figure 2. Figure 3b is the common
midpoint stack after the model statics were applied. Due to the severity of the statics, vir-
tually no indications of reflection events can now be observed. The data in Figures 3a,b are

the input to the statics estimation algorithm.

Figures 4a-e illustrate the results of applying the statics algorithm. Three stages of
the algorithm's execution are depicted; the stack after 241 iterations (4a), after 308 itera-
tions (4b), and the final solution, after 464 iterations (4c), which closely resembles the
desired solution in Figure 1b. Figure 4d shows the same four common midpoint gathers from
Figure 3b; they are now depicted after the statics solution has been applied. For this exam-
ple, Ty = To/ log(kg+k), with Ty = 4500, kg = 5000, and k& the number of sweeps (there
are twenty sweeps per iteration). Allowable perturbations for shot and receiver statics fell
within +40 msec,, in 4 msec. increments. Figure 4e shows a graph of average stack power
versus iteration. Note that there is very little change in power until after approximately 230
iterations. After 300 iterations, an abrupt increase in power occurs. Sudden changes similar
to this are analogous to ''phase transitions" in statistical physics, and were repeatedly
observed in virtually all tests. By the time iteration 308 was reached, the statics algorithm
essentially completed its most important work - solving for the shorter wavelength statics,
leaving only long wavelength residuals. The longer wavelengths are the most poorly deter-
mined components of the solution - this is as true for the linearized technique of Wiggins et
al (1976) as it is here. By iteration 454 (the final solution), only a slight long wavelength
residual remains. Although we observe here, as elsewhere, the fundamental ambiguity
between long wavelength statics and structure, it is important to note that the drastic

structural variation implied by the artificial fault does not influence the solution.
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FIG. 1a. Four "moveout-corrected"” common midpoint gathers. The gathers are shown
without static shifts; there are 6 offsets in each gather. This correct alignment of traces
represents the desired solution for pre-stack data.
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FIG. 1b. Common midpoint stack prior to the introduction of static shifts. The cablelength
extends over 24 midpoints; there are 100 midpoints in total. The signal-to-noise ratio is
approximately 2. This represents the desired solution for stacked data.

SEP-38



Rothman

16 Nonlinear inversion

\Mode[iéhot Statics

40

msecC

-40 O

1 o T 1

10 20 30 40 50
shot number

Mode! Receiver Statics

40

msecC

-40 O

0

10 20 30 40 S0

receiver number

FIG. 2. The shot statics (above) and receiver statics used to generate the test data in Fig-
ures 3a,b. The statics model was created by taking a sample from a Markov random field.
Statics range between +40 msec. for both shots and receivers.
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FIG. 3a. The common midpoint gathers of Figure 1a after the application of the static shifts
in Figure 2. Note how the statics have degraded the appearance of the data.

SEP-38



Nonlinear inversion

17

Fothmon

S0

IQO

0.2 0.4
time (sec)

Input

Stack

FiG. 3b. Common midpoint stack after application of the statics

Figure 1b
estimation

in Figure 2. Since the shifts
events in

indication of the reflection

apart, virtually no
an now be observed. The data in Figure 3a and 3b are the input to the statics

€ as much as 160 msec.
algorithm.

50

IQO

ittt

Ry =

Nt

R

Stack

O.2 0.4
time (sec)

241 iterations

estimation

of the statics
ainder of the sec

the left, though the rem

FIG. 4a. Common midpoint stack after 241 iterations

Good conve

algorithm.
hibit

tion exhibi

already appears on

rgence

the effects of misaligned traces

SEP-38



(08s) Bwli}

(oes) swl |

Rothman 18 Nonlinear inversion

0 50 100
O |yt UGN T
“ ) ( R s

R )
o LA A s LA R
O

Stack 308 iterations

FIG. 4b. Common midpoint stack after 308 iterations. Although long wavelength statics
remain to be resolved, the bulk of the algorithm's work is completed. Note that, despite the
ambiguity between structure and long wavelength statics, the artificial fault at trace 50 is

properly resolved.
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FIG. 4c. Common midpoint stack after 454 iterations. This is the final solution, and should
be compared with the input (Figure 3b) and the known, desired solution (Figure 1b). The 8
msec. rise on the right half of the section is a result of poorly resolved long wavelength
statics, due mostly to the noise contamination in the data.
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FIG. 4d. Common midpoint gathers after the statics solution has been applied. This should
be compared with the input (Figure 3a) and the desired solution (Figure 1a). CMP 60 exhi-
bits a slight error due to the poorly resolved long wavelength. The traces extend over less
time now because the application of statics creates zeroes at early and late times.

Average Stack Power

200 300 400
I teration number

0 100

FIG. 4e. Graph of stack power versus iteration number for the test leading to the result in
Figure 4c. The input stack power is normalized to 1. One iteration is defined to be 20
attempted perturbations per shot and receiver static. The final solution yields a stack
power of 3.3564, which is short of the true solution by 1.3%. Note the sudden increase in
power after 300 iterations. This is analogous to a '"phase transition” in statistical physics.
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FIG. 5. Difference between the estimated statics and the true statics for the result in Fig-
ure 4c. The 8 msec. rise in the right half of Figure 4c is the result of the constant 4 msec.
error for approximately the last 20 shot and receiver statics. The permitted perturbations
for statics fell within +40 msec., in 4 msec. (1 sample) increments. The degree of noise
contamination for this test was too strong for the long wavelength residual to be resolved.
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FIG. 6a. Common midpoint stack after applying the relaxation algorithm with constant 7 =0
to the data of Figures 3a,b. Only perturbations which increased power were accepted. This
simple Monte Carlo procedure produced not only a severe '"cycle-skipping'' problem, but sub-
stantial localized misrepresentation of structure. Full convergence (shown above) to this
local extremum was achieved after only 28 iterations.
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FIG. 6b. Graph of power versus iteration for the test leading to the result in Figure 6a. Con-
vergence was achieved almost immediately after about 10 iterations. No perturbations were

accepted after the 28th iteration, conclusively demonstrating that Figure 6a represents a
local extremum of power.

The final normalized stack power for the solution in Figure 4c¢ is é.354. The known,
desired solution has an average stack power of 3.399, so the computedﬁsolution is in error
by approximately 1.8%. The difference between the estimated statics and the true statics
is graphed in Figure 5. Note that, for both shots and receivers, the basic error occurs as a
slight kink about two-thirds of the way along the line. The degree of noise contamination for
this test was such that this long wavelength residual could not be resolved; other tests (not

shown) with higher signal-to-noise ratios more successfully resolved the long wavelengths.

Figures 6a,b illustrate an example of "quenching” the solution - i.e., running the same
algorithm, but always with 7 = 0. This is the simplest Monte Carlo procedure - only pertur-
bations which increase power are accepted. The result is a trap in a poor local extremum
that shows virtually no resemblance to the desired solution, demonstrating the necessity of
accepting both increases and decreases in power. Figure 6a depicts the resulting stack,
and Figure 6b shows the corresponding power versus iteration plot. Note that convergence
was attained almost immediately after about 10 iterations. In this example, the algorithm
was forced to continue for 85 iterations, though in actuality no perturbations were accepted
after the 28th iteration. This conclusively demonstrates that Figure 6a represents a local

extremum.
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Future applications

The most immediate objective is the application of the residual statics algorithm to field
data. Preliminary tests on data from Williston Basin, North Dakota were successful, but the
results are not shown because the statics problem for these data can be solved by stan-
dard techniques, and does not merit the extra effort required for implementation of the

relaxation algorithm. Efforts toward obtaining more appropriate test data are underway.

The residual statics algorithm may easily be adapted to the problem of frequency-
dependent statics estimation. The simple statics model discussed in the previous section
involves a phase shift that is linear with respect to frequency; a frequency-dependent
model, however, allows more general variation in phase shifts. Frequency-dependent statics
estimation is in many senses a surface-consistent deconuvolution. ldeally, the source
waveform and near-surface resonances would be deconvolved in a source- and receiver-

consistent manner.

The frequency-dependent statics problem is notoriously difficult with models similar to
(16) because phases must be "unwrapped" - the usual attempts at spectral decomposition
have difficulties with phase shifts greater than || (Sword, 1983). The optimization tech-
nique described here, however, does not encounter this difficulty. Adaptation of the algo-
rithm is straightforward and requires just two elementary theorems from Fourier transform
theory. The Rayleigh-Parseval theorem states that power in the time domain equals power in

the frequency domain. So for a function f (¢) and its Fourier transform F(w),

Y12 = 2| F(w)]? .
t w

In addition, the shift theorem states that time shifts in the time domain are equivalent to

multiplication by a complex exponential in the frequency domain:
Fl-1) > ' F(w) .
Then by letting the Fourier transform of d,;,(t) be denoted by Dy, (w), we may include fre-
quency dependence in (18a) by writing
2

I,si [S(&)), r(&})] - 2 2 2 e"“[si(y.h)(”) + Tj(y.h) ()] Dyh(w) . (20)
h

yEY". w

Similar changes apply to equation (18b). Note that the s; and 7; are now functions of w.

There is a problem with this formulation that is related to the non-uniqueness of any
residual statics solution. For the solution presented in the previous section, the longest

spatial wavelength (the d.c. component) is fully undetermined by the data. In the
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frequency-dependent case, the longest wavelength of each w-component is also undeter-
mined, but additional complexities arise because each component is independent of the oth-
ers. Physically, however, the frequency-dependent phase shifts are expected to be locally
correlated with each other to some degree. This prior knowledge may be incorporated in
the potential function (19) by smoothing s(w) and r(w) over w. Representing these
smoothed functions by §(w) and ¥(w), the energy function for frequency-dependent statics

Is

E[s(0), )] = -2V, [8(0),7(w)] - P Vi [$(w), Hw)] .
i b

Another candidate for inversion by stochastic relaxation is the problem of missing data;
specifically, spatial interpolation of spatially aliased data. If there is only one aliased dip,
then simple sinc interpolation may be locally applied along the direction of dip (Larner et al,
1980). But when two or more dips locally conflict and are aliased with respect to each
other, then no straightforward interpolation operator is obvious. We have now truly a prob-
lem of estimation, and the Bayesian approach outlined here may be applicable. Again, the
crucial element is the choice of potential function. A power-related potential could probably
be effective for this problem, too. A correlation coefficient would be computed locally as a
function of dip direction. The local potential would be the sum of the maximas in the correla-
tion function, and energy would be the sum of these potentials. Each maximum would be
included in the potential function so that dips of more than one direction could be detected.
The neighborhood over which these calculations are made would encompass just a few

traces and a few time samples.

The general problem of velocity inversion also may be approached much like residual
statics estimation. A two-dimensional grid would be parameterized by velocity, and we would
seek the velocity distribution yielding the maximum stack power. The problem is much more
computationally intensive, however, because each perturbation and power calculation would

necessitate far more effort than the simple shifts and sums needed in residual statics.

Remaining questions

Several important theoretical questions remain to be answered. Perhaps most impor-
tantly, much still needs to be learned with respect to the rate at which temperature is
decreased. The notion of a critical temperature (Kinderman and Snell, 1980) in the theory
of Markov random fields may offer some important answers. Above the critical temperature
non-neighboring parameters are relatively independent of each other, but below this tem-

perature the influence of non-neighboring parameters is strong. The statics tests exhibited
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similar, abrupt behavior ("'phase transitions') at certain temperature levels. Estimation of
these critical temperatures in practical cases could greatly increase the efficiency of the

relaxation algorithm.

Ideal potential functions may not be as simple as the ones described here. In particu-
lar, it may be advantageous to include spatial dependence in the function, so that different
measures are computed in different locations (to account for variations in signal-to-noise

ratio, spectral color, etc.).

This paper's approach is Bayesian in nature because a prior (Markov-Gibbs) probability
model is specified. This inclusion of prior information is essential to the technique's success,
but probably only a fraction of the available prior information has been exploited. We may
reasonably expect that convergence will be faster and more accurate as more problem-
dependent constraints are employed. For example, when the statics algorithm fails, it usu-
ally converges to a massive, obvious blunder. One way of protecting against these failures
would be to construct a penalty function that detects unwanted dips (i.e., evanescent
energy) on the output stack. This and most other types of prior information may be incor-
porated in the energy function. The more this is done, the more truly "Bayesian' the solution

will be.

Much research and experimentation remain to be performed with regard to the important
notion of ergodicity. Hammersley and Handscomb (1964) cast the Metropolis algorithm (the
relaxation algorithm run at constant temperature) in terms of Markov chain theory. Ergodic
averages (expected values) may be computed from successive realizations of a Markov
chain if the chain is irreducible., A Markov chain is irreducible if all possible states are
reachable from all other possible states. Thus the model m is irreducible if P(m) > O for all
m [or if F(m) < =], which is the assumption made in equation (3b). If this is valid, then for

constant 7 = T, we may compute the ergodic averages

<fm> = Y fmPM=m) = =

where <> signifies expected value. The error in <f {m)> drops off as 0(n"!?), where n is
incremented for each attempted perturbation. Calculation of these ergodic averages using
the Metropolis technique is just a simple, uniformly weighted average of the Monte Carlo
simulations at constant temperature. Thus the means, variances, covariances, etc. of the
posterior probability distribution are easily obtained. We may even obtain an estimate of the

posterior probability function by constructing a histogram. These are all important in the
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solution of a geophysical inverse problem, because not only may we obtain simple answers
(the maximum a posteriori solution) but we may also obtain estimates of resolution and accu-
racy. These latter quantities come directly from the posterior probability function. The pos-
terior probability function is arguably the most fundamental information that a solution to an

inverse problem can provide (Tarantola and Valette, 1982).

Whether or not the Markov chain is irreducible is unfortunately difficult prove. Irreduci-
bility comes directly from assuming that P(m) > O for all m, but this may become question-
able if the random perturbations are sampled from a distribution that is not uniform over the
range of all possible values for M. This question is important, because significant gains in
computational efficiency may be possible by progressively narrowing the distribution from

which perturbations are obtained.

Conclusions

This paper has presented the basis for further investigations of nonlinear inverse prob-
lems in reflection seismology. The prior assumption of a Markov random field is a good, sim-
plifying model for many seismic data processing problems, and the Markov-Gibbs equivalence
leads to the application of a powerful optimization technique designed to attack the problem

of local extrema.

The preliminary application of these ideas to the problem of residual statics estimation
has been successful. Tests were performed on synthetic data, but the data presented dif-
ficulties usually unseen in field datasets. Application to field data is the next goal in the

continuation of these efforts.

Future applications to frequency-dependent statics estimation, missing data restora-
tion, and other inverse problems are envisioned. The necessary assumption is that parame-
ters are locally interactive and define a Markov random field. Viewed from this perspective,
the difficult, nonlinear inverse problems in reflection seismology may gain new and valuable

solutions.
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