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Probabilistic residual statics

Daniel Rothman

Abstract

Conventional least squares residual statics solutions are known to fail when noise con-
tamination causes gross errors ("cycle skips') in observed time deviations. The statics
problem is presented here as a combination of information in the form of probability density
functions {Tarantola and Valette, 1982), allowing more flexibility in the determination of time
deviations and less tendency towards gross errors. Solution of a very large optimization
problem with many local maxima is necessary. The applicability of a recently proposed tech-

nique of Monte Carlo optimization (Kirkpatrick et al, 1983) is examined.

Introduction

Residual statics solutions are conventionally based on a set of observed constant tim-
ing differences between input traces and some spatially varying model. The observed time
deviations T}; for a trace associated with the ith shot and jth geophone are expressed as
a linear combination of surface-consistent and subsurface-consistent parameters S, F, G,

and M as

described by Wiggins, Larner, and Wisecup (1976). S; and R; refer to the ith shot and jth
receiver static, respectively. (; represents the geologic component of traveltime for the
kth CMP, and M, is a time averaged residual normal moveout coefficient which is multiplied
by the offset, z, squared. We wish to find the parameters 5; F;, (3, and M, given the
observations T7;;. The problem is linear, overdetermined, and underconstrained. Using gen-
eral linear inverse methodology, Wiggins et al solved for the parameters that, in a least

squares sense, best satisfied the observed time deviations.
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Errors in the theory

The travel-time model in equation (1) employs, like most models, simplifying assumptions
that help make the problem tractable. Perhaps the most arbitrary assumption made here
concerns vertical raypaths - near surface waves are assumed to travel vertically for all
shot-receiver pairs. Other assumptions concerning frequency-independence have been dis-
cussed by Chuck Sword (SEP-35). Also restrictive are the notions of surface- and sub-
surface consistency (for example, velocity anomalies may not be at the surface, and reflec-
tors are not always planar). Thus errors arise in residual statics solutions that are indepen-

dent of data quality.

A more general, probabilistic model incorporates the errors that exact theory denies.
The relationship (1) can be used to derive a conditional pdf 8,;(Ty; | S;,R;,G,,M). This
incorporates the exact solution to the forward problem [find T;;, given S, Rj, G , and M ]

and acknowledged inadequacies in the model. For compactness, we let
T = f(SR,GM) (3)

represent the system of equations described by (1). We choose the errors in the model to

be Gaussian, which yields the multivariate pdf

T
6(T | S,R,G,M) = exp [— %—[T -f (S,R,G,M)] C! [T i (S,R,G,M)] (4)

where C,, is a covariance matrix.

Solution of the inverse problem

Tarantola and Valette (1982) have approached the general inverse problem as a combi-
hation of information given in the form of probability density functions. Their analysis is
Bayesian in nature, though more general. Following their conclusions, [specifically, equation
(6.7) of their paper] we obtain the pdf of the desired parameters given the pdf's of the

data and theory described in the previous two sections. Thus
o(SR,GM) = [p(T) 6(T|SRGMJIT . (5)

If the Gaussian distributions (2) and (4) are assumed, then the pdf of the parameters

becomes [equation (10.4) of Tarantola and Valette]

¢(S,R,GM) = exp {—%—[To - f(S,R,G,M) ]T (Co+CR) M To—f (S,R,G,M)] (6)
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The solution of Wiggins et al is based on the single quantities T;j, weighted in the least
squares equations according to their estimated accuracy. Following the work of Tarantola
and Valette (1982), the residual statics problem is reexpressed here in more general terms
in which the observed data and the theoretical relationship (1) are given as probability den-
sity functions, instead of single quantities or exact equations. It is seen that Gaussian
assumptions for the error in both the observed data and the model relationships yield the
least squares solution described by Wiggins et al. However, as discussed by Donoho
(1979), the errors in the observed timing deviations are not Gaussian when the signal-to-
noise ratio is low. These non-Gaussian errors manifest themselves as the familiar "cycle-
skips." Thus conventional approaches to the statics problem employ erroneous assumptions

for the distribution of errors in the observed data when S/N is poor.

Errors in the data

Trace-to-trace time deviations are usually estimated from crosscorrelations.
Crosscorrelation is performed for a range of lag times; the lag time yielding the maximum
value of the crosscorrelation spectrum is the "picked" timing difference. These picked times
Tij are the observed data in the residual statics inverse problem. If the data are relatively
uncontaminated by noise, errors in T;; are Gaussian with zero mean. Noise, however, causes
crosscorrelation spectrums to contain several maxima of nearly equal magnitude. Choosing
Ti_,- according to the absolute maximum in the spectrum often results in gross errors, or
“blunders.” Donoho (1979) showed that these gross errors are uniformly distributed over the
lag range used. Recognizing this problem, we choose to specify probability density functions
pij(Tij)a to be used in lieu of the single, possibly grossly erroneous quantities normally
employed. This pdf contains all the available information on Tij. For data with low S/N,
pij(TiJ-) would likely be multimodal; the modes (maxima) of the distribution would correspond

to both cycle-skips and (to some extent) the true value of 7j;.

Let T represent the set of all possible time deviations for a given dataset, and let T,
represent the set of true time deviations. If the errors in the time picks are assumed to be

Gaussian, we obtain the multivariate pdf
1 T .,

where Cg is a covariance matrix. We emphasize, however, that for the important case of low

S/N, po(T) will generally not have a Gaussian nor an analytic expression.
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In a large problem such as this, the joint pdf in (5) or (6) need not be fully computed. Calcu-
lations may be restricted to the maximum likelihood point of the distribution, that choice of
parameters which maximizes the pdf. For the Gaussian assumptions of (6), this leads to the
minimization of | Ty — f (S,R,G,M) ]2, which is the least squares solution of Wiggins et al. We
are most interested, however, in p(T) as a non-Gaussian pdf, and find ourselves left with the

apparently enormous problem of finding the maximum likelihood point of (5).

The main difficulties here are the size of the problem and the multimodality of the gen-
eral, non-Gaussian p(T). How big is the problem? If a line has 1000 midpoints, then we can
expect 500 shot and receiver static values, respectively. And also 1000 values for the
structural term. We can conservatively assume only one, average RNMO term. |f each of
these parameters can take on one of 10 possible discrete values, then an undirected, brute
force approach necessitates computing 10%0¢. 10%90. 10100C. 10 = 102901 (j.e., infinity) dif-
ferent solutions to equation (5) on the way towards finding the optimal combination in the

parameter space. We have, then, a very large problem.

Simplifications

Reductions in computational effort are possible. Assuming that all the p,;j(TiJ-) and

Qij(Tij | S,R,G,M) are independent, equation (5) becomes

o(SRGM = [ T] py(Ty) 6;(Ty | SRGM) dT,; . (7)
i

The range of the product may be constrained to extend over, say, only the length of the
cable [effectively the limit of a reliable solution (Wiggins et al, 1976)] instead of the entire

seismic line. Now the number of possible solutions is proportional to something like

1QNSHOTS + NRECS + NCMPS \here the terms in the exponent refer to only those terms within

the desired maximum wavelength. For a typical seismic survey, this would be something like

10100, still, unfortunately, prohibitively large.

We may further assume that the model (1) is an exact relation. Then
e.u (TU IS,R,G,M) = 51] [Tl] —f (S,R,G,M)] (8)
and (7) may now be integrated to

U(S’R)G:M) = Hp';,][f(S)Ryeym)] . (g)
i.J

The optimization problem is no smaller, but the calculations are even more trivial than before.
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A combinatoric view

This approach does not result in a significantly smaller optimization problem, but it does
yield some more insight into the issue. We can think of p;;(7;;) as being a series of a few
spikes, each weighted according to their relative probability. Treating each component
separately, we then find the oplimal least squares solution - that choice of spikes from
each p;;(T;;) which yields the lowest least squares error. We now have a large combinatoric
problem. If each p,;(T;;) consists of two spikes, and there are, say n CMP's of multiplicity

m., then there are 2™™ possible solutions. Evaluating each solution is still impossible.

Monte Carlo optimization

The large nature of this problem requires an optimization procedure that is sophisti-
cated enough to avoid functional evaluations at every possible point while still unlikely to
get trapped in a non-optimal but local maximum. An optimization technique recently

developed by Kirkpatrick, Gelatt, and Vecchi (1983) appears to be adaptable to our problem.

Kirkpatrick and his colleagues have based their technique on properties of statistical
mechanics. They propose an analogy between the experimental procedure of annealing
(slowly cooling a melted substance until it reaches its pure crystalline ground state) and
large-scale optimization. They base their procedure on the Metropolis algorithm (Metropolis
et al, 1963), a simple computational technique developed to simulate the behavior of a sys-
tem of atoms in equilibrium at a given temperature. Statistical mechanical theory shows that
a system in thermal equilibrium is characterized by the average or near-average behavior of
the system when the average is computed from the ensemble of all possible atomic confi-
gurations {r;]. Each configuration {r;} is weighted by a Boltzmann probability factor
exp[ —E({r;})/ kgT]. E is the energy associated with a particular configuration {r;}, 7 is
temperature, and kg is Boltzmann's constant. The Metropolis algorithm simulates the change

of configurations {r;] as time evolves.

Where is the connection with optimization theory? The ''energy’ in an optimization
problem is the objective function being minimized (or maximized), and "temperature" is
expressed in the same units as the objective function. By using a Metropolis-like algorithm,
a system may be first "melted,” brought to equilibrium through random perturbations con-
sistent with the Boltzmann distribution, and then slowly cooled by lowering 1, thereby limiting
the acceptable perturbations of {r;] allowable through tha Boltzmann probakiiity factor. The
key idea is that the energy or objective function need only be evaluated locally. Computa-
tional eifort appears to scale nearly linearly with the number of paraineters, instead of

exponentially.
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With respect to our statics problem, the local energy or objective function may be
expressed as
Eyj = Y CTin jop— Sioa — Bjop— Goeow — Mi_yzi )* (10)
ALy
for u,v, and X implying a summation ranging over, say, 10 shotpoints. Random perturbations
of the local energy would mean drawing random values of Tj; from pij(Tij) and making ran-

dom guesses for S, K, G, and M. If annealing (cooling) is carried out properly, the system

should eventually settle to its optimal state, or some reasonable estimate of it.

The Kirkpatrick algorithm has yet to be tested on the statics problem presented in this
report. Fruitful applications potentially exist here and elsewhere in geophysics and will be

the subject of future investigations.
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