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3.6 Migration with velocity estimation
(revised lecture notes)

Jon F. Claerboul

In preparing my new book | discovered a surprising relationship between Hale's con-
stant offset dip moveout filters, and the radial trace approach of Rick Ottolini. You may wish

to skip over the early parts of this section to the new material near the end.

SEP-37
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3.6 Migration with Velocity Estimation

We often face the three complications dip, offset, and unknown
velocity at the same time. The double-square-root equation pro-
vides an attractive avenue when the velocity is known, but when it
isn't, we are left with velocity-estimation procedures, such as that
in the last section, which assume no dip. In this section a means
will be developed of estimating velocity in the presence of dip.

Dip Moveout — Sherwood’s Devilish

Recall (Section 3.2) Levin's expression for the travel time of the
reflection from a bed dipping at angle a from the horizontal:

tey? = 4(y—yo)zsin2a + 4 h? cosa (1)

In (h,t)-space this curve is a hyperbola. Scaling the velocity by
cosax makes the travel-time curve identical to the travel-time
curve of the dip-free case. This is the conventional approach to
stacking and velocity analysis. It is often satisfactory. Sometimes
it is unsatisfactory because the dip angle is not a single-valued
function of space. For example, near a fault plane there will be
diffractions. They are a superposition of all dips, each usually
being weaker than the reflections. Many dips are present in the
same place. They blur the velocity estimate and the stack.

In principle, migration before stack —some kind of implemen-
tation of the full DSR equation — solves this general problem. But
where do we get the velocity to use in the migration equations?
Although migration is somewhat insensitive to velocity when only
small angles are involved, migration becomes sensitive to velocity
when wide angles are involved.

The migration process should be thought of as being interwoven
with the velocity estimation process. J.W.C. Sherwood (19786)
showed how the two processes, migration and velocity estimation,
should be interwoven. The moveout correction should be con-
sidered in two parts, one depending on offset, the NMO, and the
other depending on dip. This latter process was conceptually new.
Sherwood described the process as a kind of filtering, but he did
not provide implementation details. He called his process Devilish,
an acronym for "dipping-event velocity inequalities licked”. The
process was later described more functionally by Yilmaz as pre-
stack partial migration, but the process has finally come to be
called simply dip moveout (DMO). We will first see Sherwood’'s
results, then Rocca's conceptual model of the DMO process, and
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finally two conceptually-distinct, quantitative specifications of the
process.
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FIG. 1. Conventional stacks with varying velocity. (distributed by
Digicon, Inc.) v

Figure 1 contains a panel from a stacked section. The panel is
shown several times; each time the stacking velocity is different. It
should be noted that at the low velocities, the horizontal events
dominate, whereas at the high velocities, the steeply dipping
events dominate. After the Dewilish correction was applied, the
data was restacked as before. Figure 2 shows that the stacking
velocity no longer depends on the dip. This means that after Devil-
tsh, the velocity may be determined without regard to dip. In
other words, events with all dips contribute to the same consistent
velocity rather than each dipping event predicting a different
velocity. So the Devilish process should provide better velocities
for data with conflicting dips. And we can expect a better final
stack as well.
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Rocca’s Smear Operator

Fabio Rocca developed a clear conceptual model for
Sherwood’s dip corrections. Figure 3 illustrates Rocca's concept of
a prestack partial-migration operator. Imagine a constant-offset
section P(t,y,h=hg) containing an impulse function at some par-
ticular (£,,%5). The earth model implied by this data is a reflector
shaped like an ellipse, with the shot point at one focus and the
receiver at the other. Starting from this earth model, a zero-offset
section is made by forward modeling — that is, each point on the
ellipse is expanded into a hyperbola. Combining the two operations
— constant-offset migration and zero-offset diffraction — gives the
Rocca operator.

The Rocca operator is the curve of osculation in figure 3, i.e.
the smile-shaped curve where the hyperbolas reinforce one
another. If the hyperbolas in figure 3 had been placed everywhere
on the ellipse instead of at isolated points, then the osculation
curve would be the only thing visible (and you wouldn’'t be able to
see where it came from).
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FIG. 3. Rocca’s prestack partial-migration operator is a superposi-
tion of hyperbolas, each with its top on an ellipse. Convolving (over
midpoint) Rocca’s operator onto a constant-offset section converts
it to a zero-offset section. (Gonzalez)

The analytic expression for the travel time on the Rocca smile
is the end of a narrow ellipse, shown in figure 4. We will omit the
derivation of the equation for this curve which turns out to be

(y —¥)° 2
1 = = J% 4 Ll (2)
h® te
The Rocca operator appears to be velocity independent, but it is
not completely so because the curve cuts offat di/dy =2/v.

The Rocca operator transforms a constant-ofifset section into a
zero-offset section. This transformation achieves two objectives:
first, it does normal-moveout correction; second, it does
Sherwood’s dip corrections. The operator of figure 3 is convolved
across the midpoint axis of the constant-offset section, giving as
output a zero-offset section at just one time, say, f5. For each f,
a different Rocca operator must be designed. The outputs for all
ty values must be superposed. Figure 5 shows a superposition of
several Rocca smiles for several values of £,

This operator is particularly attractive from a practical point of
view. Instead of using a big, wide ellipse and doing the big job of
migrating each constant-offset section, only the narrow, little
Rocca operator is needed. From figure 5 we see that the energy in
the dip moveout operator concentrates narrowly near the bottom.
In the limiting case that h/vt, is small, the energy does all go to
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FIG. 4. Rocca's smile. (Ronen)
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FIG. 5. Point response of of dip moveout (left) compared to
constant-offset migration (right). (Hale)

the bottorn. When all the energy is concentrated near the bottom
point, the Rocca operator is effectively a delta function. After com-
pensating each offset to zero offset, velocity is determined by the
normal-moveout residual; then data is stacked and migrated.

The narrowness of the Rocca ellipsoid is an advantage in two
senses. Practically, it means that not many midpoints need to be
brought into the computer main memory before velocity estima-
tion and stacking are done. More fundamentally, since the opera-
tor is so compact, it does not do a lot to the data. This is
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important because the operation is done at an early stage, before
the velocity is well known. So it may be satisfactory to choose the
velocity for the Rocca operator as a constant, regional value, say,
2.5 km/sec.

An expression for the travel-time curve of the dip moveout
operator might be helpful for Kirchhoff-style implementations.
More to the point is a Fourier representation for the operator itself
which we will find next.

Hale's Constant-Offset Dip Moveout

Hale (1983) found a Fourier representation of dip moveout.
Refer to the defining equations in table 1.

NMO t-t t = \/t2+4h% 2

n

Levin’s NMO | t-t, t = \/tg + 4h 2y ~2cos®a

DMO t, >ty | t, = Vt§ —4h%v ~2sina

n

TABLE 1. Equations for normal moveout and dip moveout. Substi-
tuting the DMO equation into the NMO equation yields Levin's dip
corrected NMO.

To use the dip dependent equations in table 1, it is necessary to
know the earth dip a. The dip can be measured from a zero-ofiset
section. On the zero-offset section in Fourier space, the sine of the
dip is v Icy/ 2w. To stress that this measurement applies only on

the zero-ofiset section, we shall always write wg.

vk,
sina = —¥ (3)
2&)0

In the absence of dip, NMO should convert any trace into a
replica of the zero-offset trace. Likewise in the presence of dip,
the combination of NMO and DMO should convert any constant-
offset section to a zero-offset section. Pseudo-zero-offset sections
manufactured in this way from constant-offset sections will be
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denoted by Polto.h,y). First take the midpoint coordinate y
over to its Fourier dual ky. Then take the Fourier transform over
time.

L wot
Po(og.h k) = [ dtye*™o ° Po(tg.h.k,) (4)

Change the variable of integration from top to ¢ .
Qo et ot,)
Polwg.h ky) = [ dt, . T Polto(t,).hoky)  (5)

Express the integrand in terms of NMOed data Fy,. This is done by
means of P, (tn,h,,lcy) = Po(to(tn),h,ky).
Ao entot. )
Polwg.h ky) = fdt, ¢ O Poltyhky) (8)

n

As with Stolt migration, the Jacobian of the transformation,
dty/ dt, scales things but doesn’t do time shifts. The DMO is really

done by the exponential term.
Omitting the Jacobian (which does little) the over-all process
may be envisioned with the program outline:

P(k,) = FT[P(y)]
Fp(ty) = NMOLP(t)]

for all k, § # three nested loops, interchangeable
forall h § # three nested loops, interchangeable
for all wy § # three nested loops, interchangeable
sum = 0
for all £,

hgk 2 \1/2
_ ; 2 v
sum = sum + exp|iwg |2 + — Pty b k)

Po(wo.h ky) = sum

)
Poltohy) = FT2D[ Po(wo.h .k, )]

Notice that the exponential in the inner loop in the program
does not depend on velocity. The velocity in the DMO equation in
table 1 disappears on substitution of sina from equation (3). So
dip moveout does not depend on velocity.

The procedure outlined above requires NMO before DMO. To
reverse the order would be an approximation. This is unfortunate
because we would prefer to do the costly, velocity-independent
DMO step once, before the iterative, velocity-estimating NMO step.
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FIG. 6. Processing with dip moveout (Hale, 1983)
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Ottolini’s Radial Traces

Ordinarily we regard a common-midpoint gather as a collection
of seismic traces, that is, a collection of time functions, each one
for some particular offset h. But this (h,t) data space could be
represented in a different coordinate system. A system with some
nice attributes is the radial-trace system introduced by Turhan
Taner. In this system the traces are not taken at constant h, but
at constant angle. The idea is illustrated in figure 7.

39S
m\

offset

time

FIG. 7. Inside the data volume of a reflection seismic traverse are
planes called radial-trace sections. A point scatterer inside the
earth puts a hyperbola on a radial-trace section.

Besides having some theoretical advantages, which will become
apparent, this system also has some practical advantages, notably:
(1) the traces neatly fill the space where data are nonzero; (2) the
traces are close together at early times where wavelengths are
short, and wider apart where wavelengths are long; and (3) the
energy on a given trace tends to represent wave propagation at a
fixed angle. The last characteristic is especially important with
multiple reflections. But for our purposes the best attribute of
radial traces is still another one.

Richard Ottolini noticed that a point scatterer in the earth
appears on a radial-trace section as an ezact hyperbola, not a flat-
topped hyperboloid. The travel-time curve for a point scatterer,
Cheops’ pyramid, can be written as a "string length’ equation, or a
stretched-circle equation (Section 3.2). Making the definition
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2h
vt

(7)

siny =

and substituting into Section 3.2, equation (13) yields

vt = 2

2 172
—t (y - 90)2] (8)
cos?y

Scaling the z-axis by cosy gives the circle and hyperbola case all
over again! The hidden hyperbola is shown as a three-dimensional
sketch in figure 8.

2
2%

z

FIG. 8. An unexpected hyperbola in Cheops’ pyramid is the
diffraction hyperbola on a radial-trace section. (Ottolini)

We will see that the radial hyperbola of figure 8 is easier to han-
dle than the flat-topped hyperboloid that is seen at constant h.
Refer to the equations in table 2.

The second equation in table 2 is the usual exploding reflector
equation for zero-offset migration. It may also be obtained from
the DSR by setting H =0. As written it contains the earth velocity,
not the half velocity. Recall Ottolini’'s result that hyperbolas of
differing ¥ values are related to one another by scaling the z-axis
by cosy. According to Fourier transform theory, scaling 2z by a
cosy divisor will scale k, by a cos¥ multiplier. This means that
the first equation in the table can be used for migrating and
diffracting hyperbolas on radial trace sections. Eliminating &k,
from the first and second equations yields the middle equation
w-wg in table 2. This middle equation combines the operation of
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migration w-k, lcy?‘ + k2cos®y = 4w/ v?

zero-offset diff. | k,~>wg kZ+ kfE = 40§/ v?
DMO+NMO wawy | .R5vRksin?Y + wfcosPy = w?
radial DMO W Wg .25 'vzkfsinzw + w2 = o
radial NMO Wg P Wo wg COSY = wg

TABLE 2. Equations defining dip moveout in radial trace coordi-
nates and also ordinary moveout in radial trace coordinates.

migrating all offsets (really any radial angle) and then diffracting
out to zero offset. Thus the total effect is that of offsef continua-
tion, i.e. NMO and DMO. The last two equations in table 2 are a
decomposition of the the middle equation w-wy into two sequen-
tial processes, w»wg; and wg—->wy These two processes are like
DMO and NMO but the operations occur in radial space. The analog
to NMO is a simple time-invariant stretch hence the notation ws.

Unlike the constant-offset case, dip moveout is now done before
the stretching, velocity-estimating step. Let us confirm that the
dip moveout is truly velocity independent. Substitute (7) into the
radial DMO transformation in table 2 to get the equation for
transformation from time to stretched time.

Blkp + 0? = of ()
We observe that the velocity v has dropped out of (9). Thus dip
moveout in radial coordinates doesn't depend on velocity. Dip-
moveout processing w-wg does not require velocity knowledge.
Radial coordinates offer the advantage that this comparatively
costly process is done before the velocity is estimated wg->wg.

The dip-moveout process, w-w,, is conveniently implemented
with a Stolt-type algorithm using (9).

Although the foregoing analysis has assumed a constant veloc-
ity, we could revert to a v(z) analysis after the dip moveout, just
before conventional velocity analysis, stack, and zero-offset migra-
tion.
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Both the radial-trace method and Hale’s constant-offset
method handle all angles exactly in a constant velocity medium,
But neither method treats velocity stratification exactly nor is it
clear that this can be done —since neither method is rooted in the
DSR. Yilmaz (1979) rooted his DMO work in the DSR, so it can be
expected to be exact for velocity stratification, but Yilmaz could
not avoid angle dependent approximations. So there remains
theoretical work to be done.

Anti-Alias Characteristic of Dip Moveout

You might think that if (y,h,t)-space is sampled along the y-
axis at a sample interval Ay, then any final migrated section
P(y,z) would have a spatial resolution no better than Ay. This is
not the case.

The basic principle at work here has been known since the time
of Shannon. If a time function and its derivative are sampled at a
time interval 2T, they can both be fully reconstructed provided
that the original bandwidth of the signal is lower than 1/27. More
generally, if a signal is filtered with m independent filters, and
these m signals are sampled at an interval m7T, then the signal
can be recovered.

Here is how this concept applies to seismic data. The basic sig-
nal is the earth model. The various filtered versions of it are the
constant-offset sections. Further details can be found in a paper
by Bolondi, Loinger, and Rocca (1982), who first pointed out the
anti-alias properties of dip moveout.

EXERCISE

1. Describe the effect of the Jacobian in Hale's dip moveout pro-
cess.



