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Velocity independent seismic imaging

Richard Ottolini

Normally, to image seismic data, one needs to know the velocity at every sub-surface
location. However it is possible to image seismic data by knowing the time dip(s) of the
seismic data at every point on the recorded seismic data. The advantage of this second
scheme is that time dips, in contrast to velocities, can be measured automatically without
picking. The algorithm in this paper is to decompose the seismic data into sections of
constant time dip, apply a velocity independent imaging operation to each dip section,
and finally recompose the dip sections into an image. This method applies where there are
laterally redundant reflections from the same sub-surface point in the form of a hyperbola.
This includes zero offset section diffractions, stacking, and migration before stack in depth

variable velocity media.

Velocity independent hyperbola summation

The velocity parameter, v, in the equation of a hyperbola for two-way travel time

4Az?
toz\/tz— — (1)

may be replaced by the time dip, p, of the seismic data. The time dip is computed from

equation (1) by
ot  4Axz
=— = 2
P= %2 vi? (2)

Then the hyperbola equation becomes

to = /12 — pAxt. (3)

Equation (3) is used for hyperbola summation in this paper. Given the seismic data

decomposed into sections of constant dip (p, z,t), equation (3) defines an all-velocity curve,
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FIG. 1.  All-velocity curves emanating from the same (z,#) point, except for
different dips.

that is (fo, Az) as a function of known (p, z,t). Figure 1 graphs all-velocity curves for
various dip slopes at the same (z, ¢) point.

If there are redundant reflections from the same sub-surface reflection point (z, o),
then the all-velocity curves generated from the redundant reflections will intersect at that
sub-surface point. Figure 2 illustrates this concept graphically using a hyperbola. This
intersection means that equation (3) instantiated at two or more (p, z,¢) points can be
solved for z, {5, and v.

If there are no redundant reflections from the same sub-surface point, then the all-
velocity curves will not intersect or the intersections will be random. Take for example
the dipping line segment in a constant velocity medium as shown in Figure 3. The all-
velocity curves do not intersect in the sub-surface and we cannot solve for the image point
or imaging velocity in this case. This is because the various reflection points along the
line segment come from different sub-surface reflectors. A mathematical proof of non-

intersection for straight line segments is given in the appendix.

Seismic data dip decomposition

A discussion of dip decomposition of seismic data into (p, z, t) space is given by Ottolini
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FIG. 2. All-velocity curves emanating from points along the side of the hyper-
bola intersect at the apex of the hyperbola.

>

FIG. 3. The all-velocity curves from a straight line segment do not intersect.
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elsewhere in this SEP report. An efficient method of computing local slant stacks similar
to the dip mix of Robinson and Robbins (1978) is used.

Preliminary field data experiments (not included in this paper) indicate that the dip
decomposition is a crucial stage in the imaging algorithm. It is best to know a precise p
spectra for every {z,t) location. However, because of the lateral mixing within a Fresnel
zone and band-limited frequency content of the seismic data, there is an uncertainty range

of p and location.

Migration after stack

Migration after stack is the weakest implementation of this scheme because there
are redundant reflections only as diffractions. The most obvious implementation of equa-
tion (3) to compute the migration all-velocity curves is a diffraction summation implemen-
tation. But this is slow when repeated for every midpoint and dip. Amplitude corrections
in the form of a cosine dip correction and vertical derivation are required in diffraction

summation migration (Schneider, 1978). The cosine correction is simply

cosf = J1- 25 =\ [1- ”A“’ (4)

A more efficient f-k implementation of equation (3) can be derived. First one con-

structs the dispersion relation
wo = [ 22 _ (5)
p P
by assuming that equation (3) is a characteristic curve of geometrical optics. The math-
ematics is done in the appendix. (Note that these are the Fourier variables of a dip
decomposed section rather than the original data. All same dip information in the original
data lies along a single radial line in the Fourier transformed original data.) The dispersion

relation gives the Fourier domain coordinate transformation of the dip decomposed data

u(k, ) = -;f;u(k,w - [% ; %] ) (6)

which is the heart of the f-k method.

A synthetic f-k migration is shown in Figure 4. The wider the p range, the tighter
the focus. The greater the number of p values, the greater the increase of signal over
numerical noise. The secondary focii are caused by wrap-around parts of all-velocity

curves intersecting.
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FIG. 4. Wave equation velocity independent migration using a f-k alogorithm.
The hyperbola velocity was .3 .

Stacking before migration

Velocity independent stacking is similar to velocity independent migration, but with
a few important differences.

o All reflections are more or less laterally redundant. So all reflections to focus to an
image.

o We know that the focus will be at zero offset (assuming no lateral velocity variations).
Therefore we only need to compute equation (3) for the zero offset Az. This means
that equation (3) is better implemented as a moveout rather than a wave equation as
in the migration case. A processing sequence would be

(1) Dip decompose a CDP gather.

(2) Apply all-velocity moveout (AVMO) to each dip gather
to obtain a zero offset trace.

(3) Recompose the zero offset trace by summing all
the dips together or some other means

e Since dipping events on a CDP gather are hyperbolas to a more or less degree, velocity
independent stacking will work on dipping events, including events of different dips
intersecting at the same midpoint. However, the image of the dipping event won’t
be entirely accurate. The dipping event CDP hyperbola actnally arises from different

sub-surface reflection points. Therefore, the overall dipping event will be smeared out
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into more CDP’s than it should be.

Migration before stack

Velocity independent migration before stack solves problems of velocity independent
migration after stack and velocity independent stacking before migration. First, it will
image line segments. Second, it will handle dipping events correctly. The major drawback
is operational. If the seismic data is decomposed into N dip components in the midpoint
direction and M dip components in the offset direction, then each unstacked data trace
much be decomposed into V X M dip traces. This is considerably more expensive than
stacking before migration and migration after stack. However, there may be some hybrid
of conventional methods and velocity independent methods which have a lower cost. Most
of the benefits arise from the stacking side of the algorithm, so the migration half might
be done in a more conventional manner.

The derivation of an all-velocity surface follows that of the all-velocity curve. We

begin with the travel time for a source and receiver separated by offset 2h.

eln—t

[\/z2+ Az+h)2+ /22 + (Az — )] (7)

This travel time surface has the shape of a pyramid where z = viy/2 is the depth to the
apex of the pyramid. Solving equation (7) for the apex of the pyramid #, as a function of

midpoint separation Az, half-offset h, travel time £, and velocity v gives

4Ax2  4h% 16A x2h2
t0=\/t2— - a— + gz (8)

Following equation (3) we may define the midpoint and offset dips to be

4Az 4h
Pz = th Ph = m (9)

With these definitions equation (8) becomes the all-velocity surface

0= \/t2 — pz Azt — ppht + p.pp Azhi2, (10)

Equation (10) is the migration before stack equivalent of equation (3). In the zero offset
cases, Az = 0 or h = 0, equation (10) reduces to equation (3). I have not been able to
construct and test a dispersion relation and f-k algorithm for equation (10}, but a good
guess is presented in the appendix.
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Appendix A: All-velocity curve non-intersection proof

This appendix proves that the all-velocity curves emanating from a straight segment
intersect at ¢, = 0. Since the obliquity weight function, equation (4), becomes zero at o,
then this focusing will not be a problem.

All-velocity curves from segment points (¢y,#1) and (2, z2) will intersect when their
(t0, Az) are the same. Define point ({2, z3) to be Ay lateral distance from point (¢y, )

on the same line segment. Then
tz =1 +pAy ACBQ = Aib'l + Ay (A - 1)

If the intersection point (¢o, Az) is the same for all-velocity curves emanating from each

segment point, then from equation (3)

\/tf — pAzit = \/t% —~ pAzaty = \/(t; + pAy)? — p(Azy + Ay)(t +pAy). (A-2)

Equation (A-2) solves for all Ay, Az; = pr., and {y = 0, thereby proving that the there is

no intersection point below the surface.

Appendix B: Dispersion relation construction

Given the characteristic give curve

to =12 — pAxt (B—-1)

this appendix will construct a dispersion relation which generates it. I was not able to find
a systematic method of obtaining dispersion relations from characteristic curves. Also, the
answer is not unique. An answer was eventually found by working both forwards from the
characteristic curve and backwards from a general template of dispersion relations, and
testing the result in a computer program.

We will assume a dispersion relation ¢ which can be used in a continuation operator
exp(i¢fy). This continuation operator when convolved with an impulse response, §(z,¢),

numerically constructs the characteristic curve
(v} oo
u(z, to, w) = / [ FFT[6(z,t)] exp(ipto) dkdw exp(ikz — iwt). (B —2)
—CO -0

Next, by the method of stationary phase we derive a differential equation which the
dispersion relation must satisfy. The method of stationary phase says that most of the
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above integral’s contribution to the result will occur at a stationary point of the exponential

phase
¥ = dlo + ka — wi. (B -3)

The stationary points are determined by

Y AY

—_ —=0: — =0 —_

T : e ; (B — 4ab)
00 _o: 9%, 4=
stz =0 5,0 —t=0. (B — 4cd)

Plugging equations (B-4cd) into the characteristic curve (B-1) gives an eikonal differential

equation which the dispersion relation must satisfy
¢% +pdude = L. (B - 5)

There are an unlimited number of solutions to equation (B-5). By analogy to the
general two dimensional wave equation dispersion relation, we will assume a solution that

is quadratic in wavenumber. We try a solution of the form ¢ = \/E where
o = ak® + bw® + ckw + dk + ew + f. (B - 6)
Making this ¢ substitution changes equation (B-5) to
Pl + PPupr = 4p. (B-17)

where

Pw = 2bw + ck + ¢; o = 2ak + cw +d. (B — 8ab)

Equating terms of the same power on each side of equation (B-8) gives the relations

a = 4c® + 2acp; (B — 9a)
b = 2b% + 2bcp; (B - 9)
¢ = 4bc + 4abp + ¢2p; (B —9¢)
d = 2ec + dp + 2aep; (B — 9d)
e = 2be + cep + 2bdp; (B — 9¢)
f =¢ + edp. (B-91)
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There is no unique answer to the system of equations (9a-f). Fortunately, the simplest
consistent solution gives a workable answer. That solution is tolet b =0, d = 0, e = 0,
and f =0. Then a = —4/p® and ¢ = 1/p. Finally, we obtain the answer

kw 4k
¢ =wo = T (B - 10)

The migration before stack dispersion relation can be constucted in a similar way.

The eikonal equivalent for equation (10) is

(¢w +px¢"k_,) ((bw +ph¢kh) =1 (B — l].)

I have not yet been able to obtain a quadratic solution in wavenumber for this equation.
A trial solution of the form

¢ = \/ak2 + bk2 + cw? + dk ky, + ek,w + fkpw (B —12)
leads to a not easily solved set of coefficient relations.

a = €® + 2aep, + depy, + 2adp,py; (B —13a
b= f2 +dfp. +2bfpr + 2bdp.pn; (B —13b
¢ = 4c® + 2cep, + 2cfpn + efpapn; (
d=2ef +2afp, + edp, + 2bepy, + df p, + 4abppr, + d2p.pr; (B —13d
e = 4ce + esz + 4acp; + 2cdpy + efpn + 2afp.pr + depapr; (
f=4cf +efp; + 2cdp, + 4cbpp + f2pn + dfpzpy + 2beppn. (B - 13f

My next best guess is a solution of the form

Er \ 2 k k z
N [ Y Ry T D TR S
Dz Pr Dz Dr, Dz Pr Dz Dn

based on symmetry, equation (B-10), and analogies with derivation of the double square

root dispersion relation. However, it takes a lot of algebra to prove whether equation
(B-14) satisfies equation (B-11).
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“But YES the hippopotamus!”

et

But not the armadilio.




