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Principle of reverse time migration

Stewart A. Levin

Introduction

At the Migration Research Workshop of the 52™ SEG meeting in Dallas (1982), atten-
dees were made privy to an elegant method of wave-equation migration, known as reverse-
time migration, presented by Dan Whitmore of Amoco. Shortly thereafter McMechan (1982,
1983) published a virtually identical algorithm under the tag "boundary value migration’.
This, along with closely related work by Baysal, Sherwood and Kosloff (1983a,b) done
independently at the University of Houston's Seismic Acoustic Laboratory, has sparked much

discussion.

In the May 1983 issue of Geophysics, Loewenthal and Mufti published quite a lengthy
short note detailing a migration algorithm they developed as early as 1977 also referred to

as ''reversed time migration."

This last algorithm is quite different from any of the former and this difference has

created confusion as to how reverse-time migration should be properly viewed.

In this short note, which | have submitted to Geophysics, | endeavor to explain the prin-

ciple of reverse-time migration and how it is applied in practice in the above algorithms.

Exploding reflectors model

Conventional methods of migrating stacked data rely on the assumption that the input
time section fits the exploding reflectors model. This model assumes that all energy
present at time ¢ on the stacked data arises from reflection at time ¢ and so the strength
of the reflection coefficient can be determined by propagating that energy back into the
earth to half its arrival time or, equivalently, propagating the energy back to time zero at half

the earth velocity.
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Time reversed waves

All the above cited researchers use the exploding reflectors model and quite rightly

remark that solutions of the scalar wave equation’

1

o P = "y

P (1)

generally used to propagate this data can be driven either forward or backward in time by
simply reversing the time axis. That is if P(z,z,t) is one solution to equation (1), then so is

P(z,z,t,—t) for any fixed constant £,.

Reverse time propagation

Since the whole point of migration with the exploding reflectors model is to move
energy back in time to its reflection (explosion) time, it is natural to use the scalar wave
equation (1) to take successive steps backwards in time until the desired initial time is

reached.

Historically this was nof done. (Timoshin (1970), who applied the Kirchhoff integral to
imaging multi-offset data, is a notable exception.) Instead the complete time history
recorded at the surface, presumably represented by the stacked data, was used to predict
the corresponding time history at successive depth increments. One of the principle
developers and proponents of this downward extrapolation has been Jon Claerbout at Stan-

ford University.

That approach treated the time section as a natural boundary condition at the surface
of the earth. The stacked data prescribed values along the =z = 0 edge of a {,r,z
halfspace which are then extrapolated to the interior z < 0. The key idea of reverse time
migration is that the same data can alternatively be thought of as a sowrce function. Time
reversing each receiver turns it into a loudspeaker broadcasting recorded energy (i.e. a time

reversed trace) back into the earth.

Equating boundary values and sources is not new. Any text on partial differential
equations (or mechanics) discusses transformation between homogeneous and inhomogene-
ous problems. Courant and Hilbert (1953 p.277) for example, point out that the linear prob-
lem L[u] = O with boundary values « = f can be reformulated in terms of v = u — f, as
L[v] = -L[f ] with boundary condition v = 0 where f is suitably extended to the interior of

the domain (in our case with zeros) thus transforming boundary values into a source term.

1 or any other scalar or elastic equation not involving time dependent coefficients or time derivatives of odd order.
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Here Loewenthal and Mufti go astray. Instead of recognizing the time section as a
source function, they scale time by velocity to produce an equivalent coordinate with units
of length (e.g. vertical depth conversion) and then treat that data as a snapshot ("blurred
depth section') of the wavefield throughout the subsurface as it might have appeared at
the latest recording time. They then further blur the picture by not extrapolating back to ¢
= 0 but instead imaging at £ = 2/ c¢. Skipping past their explanations and simply looking at
their equations one readily finds that, for constant velocity ¢, their algorithm migrates with

the dispersion relation

ek, —w = w— VP + c?kr (2)

agreeing only to second order (15°) with
ek, —w = Vo —c?kl-w (3)

used for conventional migration.

Instabilities

A classic problem with wave extrapolation is the presence of paired exponentially
growing and decaying nonpropagating solutions known as evanescent waves. These are, of
course, no problem in nature, which automatically picks the one decaying away from its
source, but can be a problem for numerical algorithms where noise or round off error can

unintentionally introduce rapidly growing, meaningless solutions.

Here reverse-time extrapolation appears to have the advantage over conventional
downward continuation. In the conventional approach we use equation (3) to extrapolate
exponential solutions exp( i k,z); evanescent waves arise from the argument of the square
root being negative. Reverse time propagation employs (3) to generate exponential solu-

tions exp( iwt) with
o = o VEEFRE (4)

which guarantees the solutions do not change amplitude in the direction of propagation.

This raises a question. The same surface data is used to determine the interior values
of the wavefield in both methods. Where did the evanescent energy go? One answer is
provided by the Kirchhoff integral (Schneider 1978). For constant velocity this may be writ-

ten as a three-dimensional convolution (Schneider equation 7)

1 a
2m 9z, | T

P(xg'y,z,t) = P(Z,’y,za,t) * J (5)
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which, though treated there as a downward extrapolation formula, can, as discussed by
Timoshin, be viewed equally well as a reverse-time propagation formula. Berkhout and Van

Wulfften Palthe (1980) compute the triple Fourier transform

texp( —i|z | Vof/c? —kf -k} ) (6)

over z, y and { of the convolutional kernel verifying that it contains both propagating and
evanescent components. This argues that the wavefield will contain the same evanescent
components regardless of whether downward extrapolation or reverse time propagation is

employed.

John Toldi (private communication) points out that the evanescent waves arise
mathematically from monofrequency plane waves on which Fourier analysis is based. When
impulsive sources are used (e.g. the delta function in eq. 8), the only amplitude changes are
spherical spreading and reflection and transmission effects at interfaces. Evanescent
waves are then associated with post-critical incidence. In this case the incident wave
arrives at the interface foo slow to produce a coherent wave front on the other side of the
interface. Huygen's construction simply produces a bunch of expanding, incoherently

interfering waves.

Multiples and full wave~-equation solutions

One nice feature of reverse-time migration is that it allows synthetic generation pro-
grams to be used directly for the purpose of migration. This includes both one-way (pri-
maries only) and two-way (primaries + multiples) algorithms. Indeed, Amoco presented an
example of reverse-time migration imaging a reflection from the underside of a rim syncline
(presumably waves refracted along rays bottoming out although multiples may also have
been involved) using a full wave equation finite difference (forward-time) modeling program.
As such, this allows full wave equation processing without the dip limitations imposed by

Kosloff and Baysal (1983) to avoid evanescent instabilities.

There are still limitations. First, the exploding reflectors model only predicts a limited
class of multiples and does not handle unsymmetric raypaths such as triangular refracted
paths and most interbed multiples. Furthermore, even for unstacked data, we really need
boundary values for the bottom (and sides) of the depth section we wish to image. Without
these transmitted waves, multiples (and primaries) will split further at each reflector rather
than coalesce into the simpler events from which they originally arose. Also, as Kosloff and
Baysal point out, the imaging condition should be more sophisticated (e.g. selecting only

downgoing energy or requiring time coincidence of up and downgoing energy) to avoid
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imaging most of these spurious multiples. One practical alternative artificially adjusts densi-
ties to match impedances (velocity x density) at all interfaces, making them transparent to

normally incident waves (Baysal, Sherwood, and Kosloff 1983b).

Another perspective

Ozdogan Yilmaz (private communication) points out that Claerbout (1976 p.245),
without realizing its interpretation, actually outlines an algorithm for reverse-time migration
while discussing finite differences for the 15° wave equation. In that work downward con-
tinuation corresponds to z —outer ordering of computations while reverse-time propagation

arises from £ —outer ordering. Because his differential equation
Pzt = = —sz (7)

contains 2z and ¢ derivatives symmetrically, computational ordering was simply a matter of
convenience. As seen in our earlier discussion of instability, this may not be true for higher
order approximations to the wave equation and stability might depend upon the direction of

recursion on the differencing grid.
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FIG. 1.. Schematic 2z —outer and f —outer 15° migrations. Both advance the stacked time
section, r;, to the same migrated, diagonal section in the indicated orders. Figure repro-
duced from Claerbout (19786).
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| remark that reverse time migration is more directly implemented not as f —outer march-
ing but simply by filling in successive planes paraliel to the diagonal, migrated image. | will

discuss this in detail in a future report.

Summary

Reverse-time migration achieves solution of linear scalar or elastic wave equations by
treating a wavefield recorded at the surface of the earth as a time dependent secondary
source distribution rather than a boundary condition in space. It also simplifies imaging of
some classes of multiple energy. Numerical algorithms based on this method should not pro-
duce solutions that grow exponentially in the direction of propagation but can still correctly
propagate evanescent energy. Finally, the simple t —outer and z -outer algorithms of Claer-

bout provide one bridge between reverse-time and conventional migration schemes.
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