The linear stacking slowness operator for a non-zero
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Abstract

All previous derivations of a linear relation between interval slowness anomalies and the
corresponding anomalies in stacking slowness have assumed a near offset equal to the geo-
phone interval. In common field practices, the distance from the shot to the nearest geo-
phone is several geophone spacings. This practice changes the exact form of the operator
relating interval slowness to stacking slowness. Because the near offset is typically only a
small fraction of the full cable length, the effect is a subtle one. The generalized stacking
slowness operator also provides the means to study the effects on stacking slownesses of

using only a limited range of offsets.

Introduction

A careful derivation of the linear relation between interval slowness anomalies and the
corresponding anomalies in stacking slowness must take into account the exact recording
geometry. In particular, the near offset ( the distance from the shot to the nearest geo-
phone) is typically several times the regular offset intervai. All previous derivations of such
a linear relation (Loinger, 1981, Rocca and Toldi, 1982, and Toldi, 1983), have assumed a
near offset equal to the regular offset interval. One might expect that the correction for an
arbitrary near offset would be a windowing of the spatial impulse response. As shown in this
paper, the shape of the impulse response itself changes, in addition to the expected win-
dowing. In the following section, a revised derivation is presented. For clarity, | present a

complete derivation, including some parts from Rocca and Toldi (1982).
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Derivation of the linear equation

The derivation of the linear equation relating interval slowness anomalies to stacking
slowness anomalies consists of two parts. The first comes from least squares analysis.
With an assumed background slowness distribution, the traveltimes to a particular refiector
can be fit in a least-squares sense to a line in t? — z? space. Then, to determine how the
slope of that line (the stacking slowness squared, = 'wsz) would change if one of the travel-
times (actually tiz) were changed by a small amount, a standard result from least squares

analysis is used,

A slope = 2w, Awy (1)
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The right side of equation (1) can be cast into a useful form, with z,= near offset:
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Note once again that for z; = 0O,
L3 zg° bRL?

nl?a = nl? -
5(L—-zg)  5(L—-zxgy)L? 9

3:0 =0 B 45
exactly as in Rocca and Toldi (1882). This can be substituted into equation (1) to get:

)

ZwSA'ws = TZtiAti (2)

In the second part of the derivation, expressions for {; and Af; are found by making
certain assumptions on the type of medium allowed. Because these quantities (f;andAt;)
depend only on the geometry of the raypaths, they are derived exactly as in Rocca and Toldi
(1982).

t; is simply the unperturbed traveltime, i.e., the traveltime for the i'* offset through the
background medium. For a constant background slowness w, with the reflector at depth 2,

we have
1/2
fo= w fo? + 422 ) (3)

Clearly this constant background slowness is also the unperturbed stacking slowness of

equation (1).

To determine Af;, we assume that the effect of a localized interval slowness anomaly
(Aw,,) is a delay of the rays passing through it; that is, the rays stay on the paths deter-
mined by the background slowness distribution. For a constant background slowness, the
raypaths are straight lines, and the perturbation due to an interval slowness anomaly of

thickness Az, , is therefore

Azan A’wm

At; 22

[xiz + 42% ]1/3 (4)

Note that although equations 3 and 4 were derived with a constant background slowness,
modifying them for a depth variable background slowness simply requires replacing the

straight raypaths with curved raypaths.

Finally, we can assemble equations 1, 3 and 4 to get

1+
anl? | 42® for zg <x; < L

Awg = (5)
¢} s for Zz; < Zg

2bzanz( =zl |[ o bL?
) 3
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2
A bit more algebra, and the definition ¢ = 4L—2— , yields
Z

2hz,,b 2 2
ot {zz] +1H%[221_1}Aw"" for zo <z <L

Moy = (6)
0 for z; < xg

So far we have determined the stacking slowness response for one reflector, to an
impulse of anomalous interval slowness encountered at a particular offset. Alternately, we
could localize the interval slowness anomaly at depth z,, beneath a particular midpoint, and
then determine the stacking slowness response as a function of midpoint. That is, as the
midpoint y approaches that of the anomaly, y,,, the anomaly will be first traversed by the
raypaths of the long offsets, then the short offsets and ultimately pass out through the long
offsets again. The midpoint response can thus be determined by making a change of coordi-

nates (see Figure 1 ):

. (2 —2g,) I
2z
- 22 (o, _ 2L .
z = Z—Zan (y yan) - L/ (y yan)
A (L—xg) |2—2an L1 2(L—zg)L’ A
v = 2n z n L Y
And finally,
2 2
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for 27 < Iy—ytml < 2
ZoL’
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Figure 2 is a plot of the impulse response as a function of midpoint. Two curves are
shown, one with zg/ L = 0, the other with zy/ L = .1, a more typical value for most field

data configurations. The first and most straightforward change in the operator, is the
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FIG. 1. Geometry to relate offset response to midpoint response. a) definition of effective
cable length L’, b) geometry for an offset less than the full cable length

windowing which occurs as the near offset increases. Secondly, the location of the zero
crossing, i.e. the offset at which there is no response, shifts outward towards the end of
the cable. Because this zero crossing is the balance point for the line in z? — t? space, it
would naturally shift out towards the end of the cable. Furthermore, the impulse response
becomes sharper--the peaks become higher and the troughs become deeper--as the near

offset increases.

One final, less obvious point, is that the area under each of the two curves is the same.
That is, the stacking slowness response to a constant change of interval slowness
throughout a thin layer of thickness Az, is independent of the distance to the near offset.
Integrating equation (7) over all midpoints produces an expected result:

Az,

area = ,
2
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FIG. 2. Impulse response as a function of midpoint. The solid line corresponds to 5/ L = 0O,
dotted line corresponds to zg/ L = .1 .

i.e. the ratio of the anomalous thickness to the total thickness involved in determining the

stacking slowness.

Transfer function

Because the inversion of stacking slowness for interval slowness is carried out in the
spatial frequency domain, it is necessary to Fourier transform the impulse response over mid-
point. Using the constants a, b, and ¢, defined in the previous section, and the definition of

a normalized wavenumber,

Kyl (z-24,) K L’

2 z 2 ’

we find the following rather forbidding expression for the transfer function:

F(Z’Zan:Ky) =

[(30 +3—cb—b) k* — (836c —2cb +6) k* + (720)]sink

+ [(1 2c+6—-2¢cb) k% — (72¢) k]cosk

1
a|L-zo [k° |- [(3cu04+(3—cb)u02—b) k* — (86cug®—2ch +6) k* + (720)]sinku0

- [(1 2cugd+(6—2cb)ug) k3 — (72cuyg) k]coskug
3 J
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with

Figure 3 is a graph of the transfer function plotted as a function of normalized
wavenumber, shown for the same values of zy/ I as in Figure 2. First, observe that the DC
value, i.e. the response at £ = 0, is the same for the two curves, exactly as expected
from the earlier space domain discussion. Although the curves are similar throughout, notice
how the exact location of the zero-crossings changes as zy/ I changes. This change will

clearly affect the inversion of stacking slownesses for interval slownesses.

Fladd 7
ot s

normal i zed wavenumber

FIG. 3. Transfer function as a function of normalized wavenumber. The solid line
corresponds to x5/ . = 0, dotted line corresponds to zy/ L = .1.

Analysis

The results of the previous section show that the effects of a non-zero near offset on
the linear stacking slowness operator are subtle, given the typical field configuration. The
dgeneralization of the operator does, however, have further applications. In particular, the
new form of the operator allows one to study the forward problem in a new light: one can
now study the effects of a particular range of offsets on determining the stacking slow-

ness.
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The implications for the inverse problem are equally interesting. By having an operator
that is somewhat local in offset space, one can consider inverting the data independently
from different ranges of offsets. Clearly there is an inherent danger in such an approach, in
that noise problems related to incorrect picks would only grow worse as one considered

fewer traces in the semblanhce measures.

Consider, however, a very mild decomposition of the offsets into two ranges. The
transfer functions corresponding to the two offset ranges have their zeroes at different
wavenumbers. This difference in the zeroes could compensate for inversion problems arising
from datasets with the usable reflectors grouped closely in depth; i.e. datasets for which all
of the reflectors have their zeroes in the same place. This point is considered further in
another paper in this report (Toldi, 1983), which deals with some of the difficulties associ-
ated with implementing the linear stacking slowness theory for a field dataset. The point to
emphasize here is that the decomposition follows quite naturally from the generalization of

the linear operator presented in this paper.
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