A tomographic velocity inversion for unstacked data

William. S. Harlan and Robert Burridge

Abstract

Tomography will resolve intermediate interval velocity changes better than amplitude
inversions or root-mean-square methods. Velocity information from reflections off continuous
beds appear over offset, h, information from diffractions over midpoint, y. Scattering sur-
faces with high curvature contain the most velocity information at depth; thus, the data

reduction used should allow arbitrarily shaped scatters.

By performing local three-dimensional slant stacks in the seismic data cube, over mid-
point, offset, and time, one may recognize segments of wavefronts as sufficiently coherent
for signal. From the arrival angles, midpoints, offsets, and total travel-times of these seg-
ments, one may assign corresponding simple raypaths. These raypaths make no assumption
of the shape of the scattering surface. Simple raypaths suffice, without later perturbation,
for our resolution. The data cube reduces to a list of raypath parameters, d. Each genuine
event produces a family of raypaths, whose spatial distribution correspond to the accuracy
with which one can estimate exit angles. This family of raypaths preserves resolution infor-
mation through the non-linear conversion to model coordinates and allows a robust solution
to the following least-squares inversion. We may emphasize diffraction information by first

estimating and removing continuous bed reflections with local two-dimensional slant stacks.

One defines an earth model, g, as a partition of interval slownesses. A transform, L,
which sums this model along raypaths found in the data should reproduce the travel-times in
d. The best g minimizes (L — d)? . We easily find the adjoint of [, and a steepest descent

algorithm for the best slowness model.
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Introduction

The stacking of common-midpoint gathers and the migration of point scatterers indicate
only very low-frequency velocity changes. Abrupt changes, on the order of meters, seem
potentially best extracted from the amplitudes of reflections, by inverting residual scatter-
ing operators. Intermediate velocity changes, whose vertical and horizontal periods are
greater than say 50 meters and less than 500 meters, do not suit either method, yet these
changes span those most usable for geologic interpretation. Tomography methods, seem
most effective for resolving these intermediate changes--just as they already resolve those
medical structures too gradational to create reflections but too rapid for crude root-mean-

square averaging.

Because direct transmission paths are not available, we must make use of primary scat-
tered waves, those from reflections of continuous beds and those from diffractions off sim-
ple scatterers (laterally unpredictable) such as bed truncations and point scatterers. Single
common-shot or midpoint gathers contain velocity information largely from continuous
reflections-~information which is weakened at great depths by limited offsets. Common
offset gathers, however, contain velocity information only from simple scatterers--
information which is equally strong at all depths because of the arbitrary range of midpoints
available. Unfortunately simple scatterers appear less frequently than do continuous reflec-
tions. Between these two extremes lie events scattered from surfaces of varying curva-
ture. Those with greatest curvature contain the most velocity information at depth. A
tomography method should use both sources of information with perhaps a bias towards sim-
ple scatterers. The reduction of the data cube prior to the tomographic inversion must make

no assumptions on the shapes of scatterers.

Reducing the data cube

Before applying the principles of tomography we must reduce the vast cube of seismic
data to a statistical order appropriate to the resolution we can hope to achieve. Tomogra-
phy requires a geometric raypath and a total travel-time for any event to be used. Each
raypath individually describes some average or root-mean-square estimate of the velocity
along the raypath; collectively they constrain perturbations of velocity where the raypaths

cross. Let us then extract from the data cube all primary raypaths.

We may estimate the exit and arrival angle of raypaths by making three-dimensional
slant stacks of small windows of the data cube. The original data, a function of geophone
position, g, and shot position, s, are uncomfortably skewed. Let us sort the data d(y,h,t)

into midpoint, y = (g + s)/ 2, versus offset, h = (g —s)/ 2. We begin with a summing
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technique closely related to Zavalishin's C.D.R. imaging of reflectors (Sword, 1981). We
select a narrow cylindrical window about some (yo,hg) and sum along planes with the

transformation

Yoty hgthh

d(py.pn.TyYohd) = f [ dly.ht=T+p(y—yo)+pa(h—ho)] dhdy , (M
Yo~y hg—bh

plus a "rho" filter.

We follow (1) with a rho filter which multiplies by w?, the square of the angular frequency for
7. We implement the above in two passes, over y then h, each transformation being just a
slant-stack transformation. Events should appear locally planer in the original data and
should then map roughly to points after transformation. The inverse transformation for this

window takes the form of the adjoint of (1), without the rho filter.

d(y,ht) = [ [dIpyprm=t —py(y —yo) —pn (h —ho)yosholdpy dpy, .

Two points then invert into two additively superimposed planes. The sampling of Py and p,
should be sufficient to avoid aliasing of events at the edge of the window. Thus the nar-
rower the window, the more sparsely one may sample dips. An inverse transform for the

entire data set may take a simpler form.

d(y.h,t) = [ [d'(p,.pp, 7=t ,yo=y,ho=h) dp, dp, .

(1) decomposes the data set into cubes containing narrow ranges of dips. These cubes add
together to reconstruct the original data. For a more extensive treatment of slant stacks

see the accompanying paper on signal/noise separation, this volume.

Because noise-spikes map to planes, noise should diffuse overall, becoming more gaus-
sian and more "defocused.” (We use this latter term to mean that samples become more
statistically dependent because of this event.) Signal, on the other hand, becomes more
non-gaussian and better focused. By examining local statistics of the data before and after
transformation, one may recognize and extract those transformed samples containing the
highest concentration of signal. (See the accompanying paper.) The power of distinguishing
signal from noise by such summing accounts for the noise-free appearance of Zavalishin's
imaged reflectors. Zavalishin preferred to assign one event to each data window. We
prefer to allow an arbitrary number, so long as little of the energy can result from the sum-
ming of incoherent noise. Note that one need make no assumptions about the shape of
scattering events. Point scatterers and arbitrarily dipping and curving beds all qualify;

events may even overlap.
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Our extraction must preserve information on resolution in order that non-linear mapping
and least-squares processing may follow. The width of our window fixes the resolution of
transformed events. Points will show a resolution corresponding to the angles over which
planes add constructively within the chosen window, analogous to the Fresnel zone. The
sampling of p's should avoid the aliasing of traces and allow inversion. The extraction must
capture a family of nearby points for each event. Later least-squares processing will
attempt to fit each of these nearby points as an independent event. We shall also see that
each point may represent a raypath, a highly non-linear sort of mapping. Thus, we must
retain this family of points to preserve the information on resolution and allow for a robust

least-squares solution.

One may emphasize diffraction information by first removing continuous bed reflections.
These reflections appear roughly linear in common offset sections. The slopes of diffractions
and noise change rapidly. Thus, those events focusing best after local two-dimensional
slant stacks over offset will represent the strongest bed reflections. The extracted events
may be inverted and subtracted from the original data, leaving only weak bed reflections and

all diffractions and noise (as described in the accompanying paper).

We may assigh a raypath to each extracted event. All events in one cylindrical window
are assumed to have been generated at s =y —h and received at g =y + h. The
(py,ph,t) at which an event focuses indicates the total travel-time and the first derivatives

of travel-time with respect to shot and geophone positions. That is
t, = (ty -4,/ 2
ty=(t, +1,)/2

Subscripts designate partial derivatives. These derivatives constrain the entrance and exit
angles of the corresponding raypath. One may trade resolution in (s,g) for resolution of the
derivatives ({; ;) by increasing Ay and Ah. Assume the scattering or reflecting point to
have the lateral position and depth of (z,z). Assuming straight raypaths, one may calculate

this point and an average velocity, v, for each event. The geometry of the event requires

(g _ 2)2 _ ,u2t92 . (s — .’15')2 _ ,Uztsz . 2)
z? 1 —'uztg2 ’ z? 1 — Rl ’
(s —z)* + (g —x)® + 227 = V3?7, (3)

These three equations uniquely determine the three unknown parameters (z,z,v). (3), how-
ever, constrains the velocity globally to fit travel-time perturbations due to local velocity

anomalies. In order not to disguise the anomalies we hope to uncover, we should instead
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assume a background velocity which varies more slowly, and invert for the raypath con-
strained by (2) or its depth variable equivalent. Perturbations must then account for incon-

sistencies in travel-times.

The reduced data will be a list of sufficiently strong events made of raypath parame-
ters, total travel-times, and weights. Because unrelated events deserve equal emphasis, a
smooth automatic gain control should be applied to the extracted points. A smooth gain
preserves local weights between the family of points which describe a single event. We
save the gained amplitude, w, as a weight for future least-squares fitting. Hereafter,

ndata” refers to the list of parameters--for straight raypaths (s,9.z,2,t,w).

Iterative estimation of interval slownesses

We define the inverted earth cross-section as a partition of interval slownesses--
slowness being the reciprocal of the interval velocity times the height of the bin. One may
require bins to be coarse enough for some raypaths to overlap in each slowness bin, or one
may choose a finer partition and require smooth variations. For the present we shall assume
no a priori statistical dependence between the bins. The up- and down-going raypaths may
each be assumed to cross one bin at any depth level (at most a linearly weighted combina-

tion of two).

We may safely omit raypath perturbations and thereby keep each iteration linear.
Fermat's principle of least time allows one to say that small local perturbations in velocity, or
slowness, will not alter the raypath. For reasonable finite perturbations in slowness, ray-
paths move less than we can hope to resolve. In fact, straight raypaths, or those allowing
only for linear velocity gradations, suffice (see Toldi, 1983). Thus, the raypaths described
by the reduced data require only the roughest prior knowledge of interval velocities -- r.m.s.
velocities as available from (2) and (8) or from a stack over hyperbolas as in conventional

velocity analyses.

We may now pose a simple linear system to be solved for slowness perturbations.
Define I as the transformation which sums the slowness model along the raypaths specified
by the data, producing total travel-times. Though allowing for quite arbitrary geometries,
such a transformation should cost quite little: it need only accommodate those raypaths
actually found in the data. Define g as the earth slowness model and d as the reduced

data. We define the ideal slowness model as that g which minimizes

min 3 (w,(Lg, - d.)? . (4)
g r
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A sample of reduced data, d,., assigns a travel-time perturbation to each raypath r, that is,
the time not accounted for by the background velocity. A sample from the earth model, g, .,
assigns a slowness perturbation (actual minus background) to each bin with coordinates
(z,z). Additionally we preserve the weights of the extracted events (based on local ampli-
tude variations as previously explained) as some function w,. Subscripts here are discrete.
We designate a raypath r by the function f 12, equal to one for bins lying on the raypath

and zero elsewhere. fI . should contain any weighting of nearby bins.

We now write the forward transform as
dr = 22 f;,za‘;,zgz,z = Lg '
T Z

The function fI ., selects for summing those bins lying on the raypath. a; . adjusts for the
angle (obliquity) with which a ray passes through a bin (e.g. a7, ® 1/ cos 07 . where the ray

deviates an angle 9;., from the vertical). For straight raypaths only two such angles exist.

To find the adjoint of . we first write the scaler product as a weighted sum over 7.

<a|Lg_> = Zwrd'r(zz.f;,za;,zgx,z)
T T Z
=g, (Y w, fI 07 .d) = <L'd|g>
& z r
- L‘a— = Zwrf;,za;,zd‘r
.

The adjoint operation, L°*, distributes a total travel-time along a raypath according to the

weights--treating each raypath independently of others.
Steepest descent iterations proceed as follows.

1. Use the results of some r.m.s velocity analysis (those found in reducing the data) and

Dix's equations to produce the first estimate of the model, 7;.

2. Calculate the gradient of expression (4) at the previous best g;.
Vg, = L'Lg; — L°d .
3. Update the model.
Fir1 = Fi — VG

<gi 19>

where o; = ————
<Lgi|Lgi>
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4, Repeat 2. and 3. until convergence is reached.
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