Chapter lll: Dip-Moveout and Prestack Migration

3.1. Prestack Migration Reviewed

An intuitive understanding of dip-moveout (DMO) by Fourier transform requires
only the ray-theoretical analysis of chapter |. Reflection seismology, however, has
progressed far beyond the geometrical analysis of raypaths. In particular, migration
algorithms, though originally based on ray theory, are now firmly rooted in the scalar
wave equation. While ray theory remains useful in understanding migration with
respect to reflection times, wave theory is necessary to properly migrate reflection
seismograms as a recorded wavefield, a wavefield that contains amplitude as well as

timing (or phase) information.

The purpose of this chapter is to put the ray-theoretical DMO process derived in
chapter | on a stronger, wave-theoretical foundation. A key assumption made toward
this purpose is that prestack migration is the wave-theoretical process that should,
ideally, be used to compute a subsurface image from reflection seismograms. There-
fore, a review of this important process is given below. Because prestack migration
has been well discussed by others, the following review is brief and is constrained to
the purpose of deriving the DMO transformation. For more complete discussions, |
particularly recommend those by Claerbout (1976,1983), Stolt (1978), and Yilmaz

and Claerbout (1980).

The first step in migration is to extrapolate the results of a seismic experiment
conducted on the earth's surface to obtain results for seismic experiments (not
actually conducted) in the subsurface. The results of seismic experiments are, of
course, seismograms, which will be denoted by a function p(¢,s,r,2) of recording time

L, source location s, receiver location 7, and experiment depth z. The seismic
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experiment actually performed is here assumed to be that in which sources and
receivers are placed along a line on the earth's surface, z = 0. Therefore, the first
step in migration, the extrapolation step, is to compute p(f,s,7,2) from the recorded

p(t,s,r,z=0).

Given the extrapolated seismic data, the subsurface image is taken to be that
portion of »(t,s,r,z) for which time and source-receiver offset both equal zero.
Recorded seismograms p(f,s,7,2=0) are usually sorted into CMP gathers
p(t,h,y,2=0), where h denotes half-offset and y denotes source-receiver midpoint

defined by

r —8 r+8

The arguments of the function p, either (s,r) or (h,y), will be used to imply the
appropriate interpretation of that function. For example, p(¢{=0,s=y,r =y,z) is the
subsurface image extracted from p(f,s,r,z), the extrapolated data in source-
receiver coordinates; and p(f{=0,h=0,y,2z) is the same image extracted from

p(t,h,y,2z), the extrapolated data in offset-midpoint coordinates.

Extrapolation of surface-recorded data is the key to imaging the subsurface.
To compute p(t,s,r,z) from p(t,s,r,z =0), one must know how the seismic wavefield
changes with depth 2. Equivalently, one needs the partial derivative of » with

respect to z; and this derivative is supplied by the scalar wave equation:

op , p _ 1 8p
Bz fz? v? 9t

where z is a horizontal coordinate (such as s or r) along the survey line, and v is the
wave velocity that, throughout this chapter, is assumed to be constant. By including
only two spatial dimensions (x and z) in the wave equation, one also assumes that

the seismic wavefield is constant with respect to the third dimension perpendicular to
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the (z,z)-plane. This latter assumption is presently made only for simplicity; and in
the last section, the resuits of this chapter are generalized to three-dimensional

seismic wavefields.

To use the wave equation in extrapolating p(f,s,r,z =0), one must interpret the
horizontal coordinate x in that equation as representing either the receiver location r
or the source location s. Actually, both interpretations are used, one after the other.
The details were given by Claerbout (1976) and Stolt (1978), and will not be
repeated here; but one of the many results in Stolt's paper was that prestack migra-

tion may be performed in offset-midpoint coordinates using the following equations:

plokyky,z=0) = fdt et [dhe “* fdye ™Y p(th,y,2=0), (3.1a)

plwky ky,2) = g Lo knky)a p(wky ky,2=0) , (3.1b)
where
[ 2 1/2 2 /e
ko (wky k) = —;}“’—[l1 - Z%F{ky +lc,,)zJ + 1= :7(1%—1%)2] } , (3.10)
and

1
(2m)3

p(t=0,h=0,y,2) = fdwfdlch fdky eikyyp(m,kh,ky,z) . (3.1d)

Equation (3.1a) denotes a three-dimensional Fourier transform, where the
appropriate interpretation of the function p is again specified by its arguments.
Equations (3.1b) and (3.1c) perform the required wavefield extrapolation in the
frequency-wavenumber domain. And equation (3.1d) is an inverse three-dimensional
Fourier transform, evaluated for all ¥ but for only £ =0 and h = 0O, thereby yielding the
subsurface image p(f=0,h=0,y,z). Together, these equations represent an algo-

rithm for performing what is often called migration before stack or, equivalently,



- 58 -

prestack migration. These terms are somewhat misleading because they imply that
stacking (integrating over offset) will be performed after migration. In fact, no
stacking is necessary or even conceivable after migration via equations (3.1).
Nevertheless, for lack of a better term, prestack migration will hereafter denote the

process defined by equations (3.1).

For several reasons, prestack migration is seldom used. |n practice, a subsur-
face image is more often computed through the following processing sequence: (1)
normal-moveout (NMO) correction, (2) CMP stacking, and (3) poststack migration.
One of the most important reasons for subdividing the imaging process stems from the
need, in practice, to estimate velocities. Initial (and often final) estimates of veloci-
ties are typically obtained by repeated application of the NMO and stacking
processes for different velocities. Although one might imagine a similar repeated
application of the prestack migration equations (3.1) for different velocities, the
computational cost of this procedure is high and, in most cases, unwarranted. Fur-
thermore, as noted by Yilmaz and Claerbout (1980, p. 1754), "an unmigrated CMP
stack section helps the interpreter a great deal in resolving spurious events on a
migrated section due to inaccurate velocities.” Unlike the typical processing
sequence, prestack migration in one step via equations (3.1) does not provide the

CMP stack as an intermediate product.

Unfortunately, the practical and time-honored sequence of NMO, stack, and
poststack migration, hereafter referred to as conventional CMP processing, is not
equivalent to prestack migration. This fact was first noted by Judson et al (1978)
and later discussed in detail by Yilmaz and Claerbout (1980). In the latter paper, the
authors noted that conventional CMP processing yields an accurate subsurface
image only if the source-receiver offset or the dip of reflectors is zero. Because nei-
ther offset nor dip is typically zero, conventional CMP processing is rarely accurate.

One might also argue that prestack migration via equations (3.1) is hardly accurate,
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particularly with regard to the assumption that velocity is constant; but, in fact,
equations (3.1) may be easily generalized to cope with depth-variable velocity, and
finite-difference algorithms derived from these equations extend their usefulness to
regions with lateral wvelocity variations (Claerbout, 1976, 1983; Schultz and
Sherwood, 1980). In any case, none of the assumptions made in prestack migration

are as restrictive as the conventional assumptions of zero offset or zero dip.

To obviate the choice between practical but inaccurate conventional CMP pro-
cessing and accurate but impractical prestack migration, a process was developed
that could be inserted into the conventional CMP processing sequence to make it
better approximate prestack migration. This process has been variously called
DEVILISH (Judson et al, 1978), prestack partial migration (Yilmaz and Claerbout,
1980), and dip-moveout (Bolondi et al, 1982). Although | will use the latter term (or
its acronym, DMO), the reader should remember that DEVILISH, prestack partial migra-
tion, and DMO are different names for the same process. Algorithms for applying DMO

may differ, however, just as algorithms for performing migration may differ.

The remainder of this chapter is devoted to the derivation of an algorithm for
performing DMO by Fourier transform. Beginning with the assumption that equations
(3.1) yield a theoretically correct subsurface image, the DMO algorithm is derived by
showing that each step in the conventional CMP processing sequence is precisely
represented in these equations. The process remaining after successively eliminat-
ing the NMO, stacking, and poststack migration processes from equations (3.1) must
then represent the difference between conventional CMP processing and prestack
migration. DMO is defined to be the leftover process. In other words, DMO added to
conventional CMP processing yields ezxactly the same subsurface image as prestack

migration via equations (3.1).
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3.2, Prestack Migration Dissected

The first step in expressing prestack migration as a cascade of CMP processes
will be to find the conventional poststack migration represented in equations (3.1).
For simplicity, equations (83.1b) and (3.1d) should be combined, dropping the

irrelevant 27 scaling factors and the inverse Fourier transform over k,, to obtain:

ik, (w.kp, ,k.y)z

p(t=0R=0,k,,z) = [duw fdk,e P (wkn,ky,2=0) , (3.2)

which, together with the definition of k,(w,k,,k,) in equation (3.1¢), will be taken to
represent prestack migration. As shown by a lengthy algebraic proof in Appendix 3.A,

kz(co,kh,ky) may be equivalently written as

2&)0 ’Uzkyz ]1/2
ko (woky) = — e Ll a0t | , (3.3a)
where w, is defined implicitly by
(workn k) AL wikf )7 (3.3b)
wlw s = w + - .
OhTy 0 AcsE 40f | |
]C2 /2
= wp 1+ ‘—é—‘i————
kz (wo,ky) J

That the two definitions of k, are equivalent is hardly obvious, but the reader should

at least verify the special case of k; = 0.

Equations (3.3) may be used to change the integration over w in the prestack

migration equation (3.2) to an integration over wyg, yielding

p(t=0,h=0,c,,2) = fdk, [duyg

dw ] ik, (wg .k, )2 _
m}e aat plelweskey ky)ky ky 2 =0] (3.4)

dw
dwg

fdwoeikg(woky)z fdkh. p[w(woykhsky)’kh’ky’z =0]
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= fdwo eik'(%'k”)zps(wg,ky) ,

where the last equality follows from defining

ps(wo,ky) = fdkh [:: ]p[w(wg,kh,ky),kh,ky,z :0] . (3.5)
0

The Jacobian of the change of variable is shown in Appendix 3.B to be

K2k}

dw Lo

d&}o - G)(G)o,kh ,ky)

. (3.6)

Readers familiar with frequency-wavenumber domain methods of migration should
recognize equation (3.4), with the definition of k,(wg,k,) given by equation (3.3a),
as representing poststack migration (e.g., Stolt, 1978; Gazdag, 1978). In conven-
tional CMP processing, ps(wg,k,) would be the Fourier transform of a CMP stack
ps(to,y). The subscript on wy and £y seems appropriate because poststack migration
is based on the assumption that the CMP stack well approximates a zero-offset sec-
tion. Think of ¢{; as zero-offset time, and of w, as zero-offset frequency. Equation
(3.4) yields the subsurface image, a function of k, and z, by extracting (integrating

over wg) the £y = O portion of an extrapolated version of p, (wg,k, ).

The first step in dissecting prestack migration is completed. Prestack migration
is just the familiar poststack migration of a function ps(t4,y). But what is ps(fg,y)?
Conventional CMP processing would assume that p,(f,,y) is the stack, an integral
over offset, of NMO-corrected seismograms; but the definition of p,(wg,k,) in equa-
tion (3.5) contains only an integration over offset-wavenumber k,. Equation (3.5)
may be easily rewritten, however, to include the conventional CMP stacking, by

inverse Fourier transforming p(w,kh,ky,z =0) over k,; to obtain

PS(CJQJC”) = fdkh

dw ] ~iky, h _
doe }fdh.e W plo(ewokn ik, )b kg 2 =0] (3.7)
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dw

Sdn fdk, e "

dw p[w(woakh;ky)’h )ky’zzo]
0

Jdh polaghky) |

where the last equality follows from the definition

dw

_ —ikph
po(wo,h,ky) = fdkh e dwo

plw(wgky ky ) h k2 =0] . (3.8)

Equations (3.7) and (3.8) complete the second step in dissecting prestack
migration. Prestack migration is just the poststack migration of the CMP stack of a
function pol(fs,h,y). The next question is, of course, what is po(tg,h,y)? In particu-
lar, how is pg(tg,h,y) related to NMO-corrected seismograms? Once NMO has been

identified, the remaining process must be the exact DMO transformation.

NMO-corrected seismograms are most easily computed from recorded seismo-
grams in the time domain. Therefore, to find an NMO transformation in equation (3.8),

rewrite that equation in terms of p(¢,h,k,,2 =0) as follows:

polwoh.hy) = fdk,e " dd—ww—}fdtew(w"kh'k")tp(t,h,ky,z=0) (3.9)
0
dw —iky b+ iw{wg kp k)t
= t,hk,,2=0) [dk n oknky
fdtp( yZ ).[ h d g

Jdt p(t,hky,2=0) I(E,wo,hiky)
where the last equality follows from defining

dw ] eﬂikhh, + twwg ky Ky )¢ (3.10)

I(t,0oh k) = [dky |- J
0

Unfortunately, the prestack process represented by equation (3.9) still does not
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resemble NMO correction. NMO is derived by the following change of variable from

recording time £ to NMO time £,:

4p?
v?

11/2

t(ty,h) = {t2 +

, (3.11)

which may be used to rewrite equation (3.9) as

polwgh.k,) = fdt, [‘—%— plt(ty.h) Rk, 2 =01 I[t(t,,R)wph.k,] . (3.12)

But NMO-corrected seismograms may be defined by

[ dt
Pty hy) = i plt(t,,h)h,y,2=0] (3.13)
. n
g 1~ 1/2 . o
= 1+ % p(VtZ + ar?/ v h,y,2=0) .

The scaling by the Jacobian in equation (3.13), although sometimes omitted in NMO
correction, ensures that data for large offsets and early times are not amplified by
NMO stretch (Dunkin and Levin, 1973). Using equation (3.13), equation (3.12)

becomes

polwghiky) = fdb, p,(te.h.ky) I(VEE + 4R%/ w00 k,) (3.14)

The final step in dissecting prestack migration is now completed. Prestack
migration is equivalent to poststack migration of the CMP stack p; of a function pg
which is related, through equation (3.14), to NMO-corrected seismograms p,. Table

3.1 provides a summary of the complete processing sequence.

The definition of DMO in equations (3.10) and (3.14) (or Table 3.1) does not
suggest a practical DMO algorithm unless the integral [(t,wo,h,lcy) is evaluated

analytically. (One would certainly not want to compute this integral numerically for
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Prestack Migration Dissected
4h2 ~-1/2 -
(1) NMO Paltn,hy) = |1+ ] p(Vt2 + ar?/vRh,y,2 =0)
vRt 2 J
n
(2) DMO polwosh,ky) = [db, palte,hky,) IV EE + 4R%/ VR 00,k k)
(8) Stack ps(woiky) = [dh polawgh ky)
(4) Migration p(t=0,h=0k,,2) = [duwye™ % p (wek,)
2(‘00 'Uzkyz ]1/2
Definitions ko (weky) = - ” 1 - 20f |
[ khz 1/2
tlwg,kpn.ky) = woll + ————
Qafth sy Ol kzz(o)o,ky)
_ dw —~iky b+ iw(wy Ky k)t
I(t,0ph k) = [di, Tur|® B ok Koy

TABLE 3.1. Prestack migration rewritten to resemble conventional CMP processing.
Prestack migration is usually thought of as a one-step transformation from data
p(t,h,y,2=0) to subsurface image p(f{=0,h=0,y,2). The functions p,, po, and p;
represent intermediate outputs of an equivalent, but more conventional, four-step
processing sequence. DMO, however, is typically omitted in conventional CMP pro-
cessing; i.e., pg and p, are typically assumed to represent the same function. Note
that a Fourier transform over midpoint y is implied between (1) NMO and (2) DMO, and
that an inverse Fourier transform over ky would be performed after (4) migration.

each £, wg, h, and lcy!) An exact evaluation of the integral is given in the next sec-
tion, along with an asymptotic (high-frequency) approximation that makes implemen-

tation of DMO via equation (3.14) quite practical.
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3.3. The Dip~Moveout Transformation

The details in evaluating the integral /(¢,wg,h ,ky) are provided in Appendix 3.C;

the result is that

ik, | Ah? i
I(t,woh k) = t—E;— -~ H([jg](|w0|tB) (3.15a)
k2le-57 )
¥ 2
——H tB)| ,wq20 ,
]szlﬁ)oltB 1 (1&}0! wo <

) (2)

where Hy ' and H,>' denote zero and first-order Hankel functions of the first and

second kinds, F is defined by

kghg ]1/2
B = B(t,wghky) = 1 - S5 (3.15b)
fdot J
and k, is defined as in the previous section by
2w v |2
ks = kgwpky) = ——1 - At (3.3a)
0

Equations (3.14) and (3.15) define the DMO process that, when applied after
NMO correction but before CMP stacking and poststack migration, yields exactly the
same subsurface image as prestack migration. In practice, one may prefer to use an
asymptotic approximation to the kernel [(t,wo,h,ky) defined in equations (3.15), if
only because Hankel functions are not as readily available as complex exponentials
in typical computing environments. Furthermore, an asymptotic approximation of
equations (3.15) enables one to check these equations against the ray-theoretical

DMO equations given in chapter |.

The asymptotic (& —» «) approximations of the Hankel functions are

Al o z_]{l"—“——
T¥.
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(see Abramowitz and Stegun, 1965). The high-frequency approximation to
I(t,wg,h,ky,) may be obtained by letting |wolt > = while keeping h/t and k,/k,
(and, hence, B) fixed. The ratio k,/ k. equals the tangent of the emergence angle
of waves recorded with zero source-receiver offset; and, for constant velocity, this
angle equals the dip of a subsurface reflector. For any given emergence angle or dip,
note that dropping the second term in / (the H, term) is consistent with keeping only
the leading term in the approximation of #,. Therefore, the high-frequency approxi-

mation of [ is

2rk?
|lwg|t B°

iwgtB + isgn(wg) :—

[(t,wo,h,ky) ] e

1/2
4k
e

Incidentally, this approximation can also be obtained by the method of stationary

phase applied to the integral of equation (3.10).

Inserting the high-frequency approximation of I into the DMO transformation

equation (3.14) yields

[ 21\']Cz2 ]1/2 iwgt, A +isgn(uo)%

polwgh k) = faltn1;:,,(tn,h,lcy)U%ItTJ , (3.16a)
where
x2pe |1/2
A = Altp,wph,ky) = 1+ a::?t,?] (3.16b)
In chapter I, DMO was defined by
polwohiky) = [dt, pultn,h k) A e 0" (3.17)

where A is defined as in equation (3.16b). [See equations (1.12).] The differences
between DMO in this chapter and DMO in chapter | lie primarily in amplitude factors.

Because the phases in equations (3.16a) and (3.17) are identical, except for a
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constant 71/ 4 phase shift, a DMO algorithm based on either of them would have the
same effect on reflection times. In other words, the ray-theoretical DMO process of
chapter | is consistent, with regard to reflection times, with the wave-theoretical

prestack migration process.

One may, of course, use the exact representation of ](t,wg,h,ky) given by
equations (3.15) in the DMO transformation. However, for practical applications, one
can easily show that the error in using only the leading term in the asymptotic
approximation is negligible for frequency-time products greater than about ten
cycles. And in analyzing the approximation error in detail, one should remember that
worse approximations are implied by the assumptions made in deriving the "exact"
equations (3.15). Two assumptions that are particularly suspect are (1) that the
wave propagation velocity is constant, and (2) that the seismic wavefield is two-
dimensional. With regard to the first assumption, | have not derived an exact wave-
theoretical DMO transformation for variable velocity, primarily because the change of
variable employed in dissecting prestack migration is useful only for constant velo-
city. Approximate corrections to the DMO equations for depth-variable velocity were
discussed in chapter Il. With regard to the second assumption, a DMO transformation

for three-dimensional wavefields is derived in the following section.

3.4. Dip-Moveout in Three Dimensions

In three-dimensional (3-D) seismic surveys, sources and receivers are not con-
strained to lie along a single line, but may be located anywhere in a plane on the
earth's surface. The recorded seismic wavefield should then be denoted by the
function p (¢,s,r,z =0), where s and r denote source and receiver coordinate vectors.

Specifically, s and r may be defined by

1l

s = 5,8 +5,8 , r r 8, + 1.8y,
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where &, and &, are orthogonal unit vectors in the plane of the survey. For conve-
nience, one may assume that &, points in the "inline" direction and that &, points in

the '"crossline’ direction.

The recorded seismic wavefield may alternatively be denoted by p (f,h,y,z =0),

where h and y denote half-offset and source-receiver midpoint vectors defined by

r—s r+s

Yilmaz (1979) showed that the desired subsurface image p(t=0,h=0,y,z) may be
obtained through the following 3-D generalization of the two-dimensional (2-D) pre-

stack migration equations:

(wkp,k,,2=0) = [dfei® [q2he P g2y o ™Y1 (4 hy,z=0) ,(3.18a)
(@K K, y D

plokyk,,z) = e*= B9 5k, ko220 , (3.18b)
where
I ]l/z R |1/2
ko (kp k) = —3—{1 - 4—0)?|ky+k,,|2J - o |ky—kh|2J } (3.18¢)
and
p(t=0h=0,y,2) = (2;)5 fde fd%k, [d%k, ™ plwk,k,,2) . (3.18d)

Equations (3.18) are quite similar to equations (3.1), but with line integrals over h
and y replaced by surface integrals. Equation (3.18a) is a five-dimensional Fourier
transform. Equation (3.18b) extrapolates the Fourier transformed wavefield to
nonzero depths z. In the definition of k,(wg.k,) in equation (3.18c), |k, + k|
denotes the length of the sum of the vectors k;, and k;; and |k, — Kk, | denotes the

length of their difference. Equation (3.18d) is an inverse Fourier transform, but
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evaluated only for £ = O and h = O to yield the subsurface image p(f=0,h=0,y,z).

in section 3.2 of this chapter, 2-D prestack migration was shown to be
equivalent to a cascade of four CMP processes. Three of these processes were the
conventional NMO, stack, and poststack migration processes; and the fourth was the
typically neglected DMO process. Although the algebra is slightly more complicated,
the steps used to dissect 2-D prestack migration may also be used to dissect 3-D
prestack migration. The result is summarized in Table 3.2, which may be viewed as a

3-D generalization of Tabhle 3.1.

Comparing Tables 3.1 and 3.2, the most significant difference is in the definition

of wlwg,kp,Ky) given by

2w 'uglczll/z
ky(wok,) = ——=1 - —L (3.19a)
v 406 J
and
/2
v? (k, kp)? ||
oKy Ky) = wofl + k2 + —L—1 . (8.19b)
0N h Ny 0[ 4wg h kzz(wo’ky)

These equations follow from a 3-D generalization of the algebra in Appendix 3.A, with
the result that equations (3.18c) and (3.19) are equivalent representations of k,.
kZ and kjf in equations (3.19) denote the squared lengths of the vectors k, and k.
Similarly, h*® in Table 3.2 denotes the squared length of the half-offset vector h. The
dissection of 3-D prestack migration then proceeds exactly as in the 2-D case, but

with line integrals over h, y, k;, and k,, replaced by surface integrals.

Analogous to the 2-D case, practical implementation of the DMO process

requires the analytical evaluation of the kernel

= 2 dw | -iky h+io{ugk, k)t
](t:wO:haky) = fd kh [dwo }e
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3-D Prestack Migration Dissected
ny ]—1/2 -
(1) NMO o thy) = 1+ W] p(VtZ + 4R¥/v3hy,z=0)
(2) DMO polwohky) = [dt, patahky) I(VEE + 4h%/v% g0 k)
(3) Stack ps(woky) = [dPhpoleghky)
(4) Migration p(t=0,h=0k,,2) = fdwoeik’(w"'ky)zps(wo,ky)
Definitions k. (wok,) = _ 2% |y _ vjjg}l/z
w(wg,Kp,Ky) = G\)g[1 + o lkf + ]:::E;a‘)::():) J}l/z
I(t,wghk,) = fdgkh[:;; }e“““h"‘””‘“w“h"‘u”

TABLE 3.2. The 3-D generalization of Table 3.1 in section 3.2. 3-D prestack migra-
tion is usually thought of as a one-step transformation from recorded data
p(t,hy,z=0) to subsurface image p(f=0,h=0,y,2). The functions p,, po, and ps
represent intermediate outputs of an equivalent, but more conventional, four-step
processing sequence. DMO, however, is typically omitted in conventional CMP pro-
cessing; i.e., pg and p, are typically assumed to represent the same function. Note
that a Fourier transform over midpoint y is implied between (1) NMO and (2) DMO, and
that an inverse Fourier transform over ky would be performed after (4) migration.

Although an analytical evaluation of this two-dimensional integral should be possible, |
have been unable to obtain it. | have, however, obtained an asymptotic approxima-
tion via the method of stationary phase. Leaving the details to Appendix 3.D, the
stationary phase approximation of /(¢,wq,h,k, ) for large |wolt is

41T|kz| 4h? ] iwgtB + isgn(uo)g-

I(t,00hk, ) ~ e
(£s0hky vt B® vet? |

b

where
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ar? | (kh)? |V

vZt? wit?

B = B(t,wo,h,ky) = |1 —

Substituting this approximation into the DMO equation of Table 3.2 yields

41T]}cz\ iwgt, 4 +1‘.sgn(wo);—

polwnhky) = fdt, p,(t,,hk,) — ,  (8.20a)
n
where
( h)g 1/2
A = Altn,wohky) = |1+ ';927 (3.20b)
Con

With regard to reflection times, the only significant difference between the 2-D
DMO equations (3.16) and the 3-D DMO equations (3.20) is that the product kyh in
the 2-D equations is generalized by the dot product k,-h in the 3-D equations. For
some 3-D seismic surveys, this difference may be ignored. For example, 3-D surveys
are often performed by conducting a series of parallel 2-D surveys. In each of these
2-D surveys the half-offset vector h typically has a zero (or near-zero) crossline
component —typically, h = h; &,. The dot product in equation (3.20b) then becomes

k,-h =kylh1s which implies that DMO may be applied to each of the 2-D lines
independently. In other words, the DMO process does not depend on ]"yz’ the cross-

line component of midpoint wavenumber, when source-receiver offsets are inline. For
such 3-D surveys, variation of the seismic wavefield in the crossline direction need

be considered only in the poststack migration process.
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3.5. Summary

Prestack migration for constant velocity may be exactly represented as a cas-
cade of four CMP processes: NMO, DMO, stack, and poststack migration. This con-
venient representation of prestack migration is summarized by Table 3.1 for two-
dimensional seismic wavefields, and by Table 3.2 for three-dimensional wavefields.
Ideally, the 3-D equations should be used, because recorded seismic wavefields are

never constant in any direction.

DMO is defined to be that process remaining after each of the more conventional
CMP processes is extracted from the prestack migration equations. Equations (3.14)
and (3.15), which were derived by extracting NMO, stack, and poststack migration
from the prestack migration equations (3.1), represent an exact 2-D DMO transfor-
mation. The asymptotic approximation of this transformation is consistent with the

ray~theoretical DMO equations of chapter i.

An exact 3-D DMO transformation, like that obtained for two dimensions, was not
derived, due to difficulty in evaluating the 3-D DMO kernel ](t,ﬁ)g,h,ky) in Table 3.2.
However, an asymptotic approximation of this kernel was obtained via the method of

stationary phase.

Appendix 3.A

The purpose of this appendix is to show that kz(w,kh,ky) defined by

/2 1/2
2 2
Cof A R
kz(w,kh,ky) = — ” [1 aw—z(ky + kh) + l1 W(ky kh) ] (3.10)
is equivalent to k, (wg,k, ) defined by
26)0 'Uzka 172
ko (woky) = — [1 - ¥ , (3.3a)
# oty ( 408
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where g is defined implicitly by

kz 1/2
h
wlwg.kp.k,) = w© e (3.3b)
First, to simplify notation, define
vk vk vky,
Z=— , Y= |, H-=
2w 2w 2w

Then square both sides of equation (3.1¢) to obtain

477

1 —(Y+HP + 1+(Y—HP + 2V1 (Y + H)?*V1 — (Y - AR

H

2(1 = Y2 - H® + 2V1 - (Y + HF¥V1 - (Y - H)? .
Isolate the square roots and square both sides again:
(1—-Y-—H?R-2Z%% = [1 - (Y + H)?][1 - (Y — H)?] .
Expand both sides to find a common (1 — Y2 — H?)? term:
(1 -Y*-H - 47°(1 -Y* - H® + 4z*

[1 —Y®-H?—2HY][1 - Y2 - H® + 2HY]

(1 - Y2 - H?)® — 4H?Y? .

i

Canceling the common term yields

ZR(Z% + YR + H® —1) = — H?Y?

HRY?

Z% = 1 -y - H® ~
Z2

Using the definitions of 7, Y, and H,
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27,2
R N S L
v® k?
and, using equation (3.3a),
4w€ = 4&)2 _kg_i[a'wg —kZ]
v? 2 h 2| v? z

from which follows

k,?]

k7

2

L= wf1+

which is just the square of equation (3.3b). Therefore, the two definitions of k, in

equations (3.1¢) and (3.3) are equivalent.

Appendix 3.B

The purpose of this appendix is to verify

dw _ tg 3 kRk? (3.6)
dwo Q(G)O)kh )ky) l k;(wo,ky) J ’ ’
given the definitions
2&)0 'Uzk 2 172
k k) = — 1 - 4 3.3
Z(wo y) v 4&)5 ( a)
2.2 2,2 1°1]w/2
vk v~k
&}(G)Q,kh,ky) = Wp [1 b 1 - g ] ] (3.3b)

+
| 40f | 40f | |

Square both sides of equation (3.3b) and differentiate to obtain



vRER [uRkf Pk}
2wdw = [2wg — 2 208 - Aok dwg

Then solve for dw/ d wy using equation (3.3a).

de _ @g o U4kh2ky2 [ 'Uzkyz ]_2
d wg @ ©w  16w¢ | 40f )
_ Wo Ichzkgg
= 2 kz4 R

which is equation (3.6).

Appendix 3.C

The purpose of this appendix is to evaluate the following integral

dw

e —ikgh + iw(wg.ky ky)t
d Wo ’

It wo,hky) = [ dk,

(3.10)

where w(wg,kp,ky) and dw/dw, are defined by equations (3.3) and (3.6) (see

Appendix 3.B). Using these definitions, note that the desired integral is the sum of

two integrals,

I = [1 + [z s
where
ka 1/2
w 2 Y-1/2  —ikph o+ iuotll + kLz
[1 = fd’Ch 1+ h ] e #
Yo 2
and
k2 0%f
I Zy 171

kr 8n?
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Therefore, the first step in evaluating / is to evaluate /,. Change the integration
variable in /; from k; to o using

k,h

z

tanhg = vy kr, = k,sinh(a + 8)
0

to obtain

[1 - lkzlfdaeiuot[cosh(a+ﬁ)~sinh(cx + 8)tanhg ]

Then use the following identities

cosh(a + B) = coshacoshfB + sinhasinhg

sinhacoshf + coshasinhg |,

sinh(a + B) =
2, _ 1
1 —tanh*g = ——,
cosh*f3
to obtain
Icghz 1/2
twgt|l —- :gtz cosha

I = |k;| fdae

An integral representation for zero-order Hankel functions of the first and second
kinds is

1 o
H!}Z](x) — i;deaetizcosha , >0

(e.g., Carrier et al, 1966). The first kind may be used for positive frequencies, and

the second kind for negative frequencies, to express /,; as

(3)

I, = :t'l.r‘lTIkzIHQ

kghg 1/2
leolt |1 "z'_] » w20

wEt?
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Using the relations

dHo(z) dH (z)

1
iz - "), dr - Ho(z) — —H\(z)

(see Abramowitz and Stegun, 1965), the second integral /; may be easily computed

from /,; and the desired sum / = /, + /, is given by equations (3.15) in section 3.3.

Appendix 3.D

The method of stationary phase for multidimensional integrals is thoroughly dis-
cussed by Bleistein and Handelsman (1975). This appendix outlines the application

of this method in approximating the 3-D DMO kernel:

dw

e —iky b+ io(wg Ky k)t , {3.D.1)
dwg

I(t,wghky,) = [d?k,

where w(wg,ky,k,) is defined by equations (3.19). The details of the approximation
are tedious and will be omitted, but the following outline should assist the energetic

reader in verifying that

Arlk, | [ ah? ] iwgtB +isgn(eg) 3
](t,wo,h,ky) R yTE l - vztzje , (3.D.2a)
where
172
_ _ an?  (k, h)?
B = B(t,wehk,) = 1~ T : (3.D.2b)

is the desired approximation.

Let & = w(woe,ky,Ky)t — ky-h denote the phase of the integrand in equation
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(3.D.1), and define the curvature matrix C by

%% 8%%
0k, 2 Oky 0k,
¢ = 8%% 82®

Oky, Bkn, Ok ?

Let def(C) denote the determinant of this matrix, and let sig (C) denote its signature,
the number of positive eigenvalues minus the number of negative eigenvalues. The

stationary phase approximation is then given by

2n de | i®+isig()T
I(t,0ghk,) ~ 4, (3.D.3)
0 ¥ |det(C)|1’2 d wq
where the right-hand side is evaluated at that k; for which
vVé = 0 |, (3.0.4)

In other words, to find the stationary phase approximation, one first finds the sta-
tionary point satisfying equation (3.D.4), and then evaluates each factor in the

right-hand side of equation (3.D.3) at that point.

Using equations (3.19) and equation (3.D.4), one may (after considerable effort)
show that the phase ® is stationary when

h}2
Ugm?

wit ¥

kh, = &}( wo,kh sky)

a
h
vt

Using this result to eliminate k; in equation (3.19b), one may show that « at the sta-

tionary point is

an? . (k,-h)? |7VF

vRt? wt?

W = Wy

The phase $ at the stationary point may then be shown to be
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ar? (K, -h)? |7

1 —
y2t? wt?

b = wot (3.D.5)

After some lengthy algebra, one may verify that the determinant of the curva-

ture matrix C, evaluated at the stationary point, is

det(C) = ﬁi: - :52 (';”g:a)z . (3.0.6)
and that the signature is
sig(C) = 2sgn(wg) . (3.0.7)
The Jacobian in equation (3.D.1) may be found as in Appendix 3.B:
do _ %o | _ (k, k,)?
d g w ki (woky) |
Evaluated at the stationary point, this is
;;; = [ - :;‘;]{1 - :2}:; + (':f‘é:z)z J—Uz . (3.D.8)

Substituting equations (3.D.5) to (3.D.8) into equation (3.D.3) yields the stationary

phase approximation in equations (3.D.2).



