Chapter ll: Dip-Moveout for Depth-Variable Velocity

2.1. Approximations for Depth-Variable Velocity

The derivation of dip-moveout (DMO) by Fourier transform in chapter | is based
on the assumption that velocity is constant. Although this assumption is almost never
valid, the application to recorded data included in chapter | suggests that applying
constant-velocity DMO is probably better than applying no DMO at all. A similar
statement could as well be made about normal-moveout (NMO) correction: NMO
assuming a constant velocity is probably better than omitting NMO entirely. In prac-
tice, of course, velocity is rarely assumed to be constant in applying NMO. Even
though exact traveltime equations for variable-velocity media are difficult (or impos-
sible) to obtain, good approximations of these equations make the constant-velocity

assumption unnecessary.

This chapter addresses the questions of (1) how DMO by Fourier transform may
be modified to approximately handle depth-variable velocity, and (2) whether or not
the modification is worthwhile. The Fourier transform over common-midpoint (CMP) y
in the DMO equations (1.12) precludes a simple modification to cope with lateral
velocity variations. Lateral velocity variations are more appropriately dealt with in
the untransformed y domain, perhaps using a finite-difference DMO algorithm as dis-
cussed by Yilmaz and Claerbout (1980). In this chapter, velocity is assumed to vary

only with depth.

Taner and Koehler (1969) showed that NMO correction for depth-variable velo-

city may be based on the following traveltime equation:
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+ O(h?) , (2.1a)



- 38 -

where { is recording time, £, is NMO time, h is half-offset, and V,({,) is the root-

mean-square (RMS) velocity function defined by

tﬂ
V() = 1 [dsv¥(s) . (2.1b)
n 0

The RMS velocity V, and the interval velocity v are defined to be functions of
migrated, two-way vertical time; but, for the horizontal reflectors assumed by Taner
and Koehler, migrated time is the same as NMO time £,. Dropping the O(h*) terms in
equation (2.1a), NMO correction is defined by the following transformation from

recorded seismograms p (f,y,h) to NMO-corrected seismograms p,,(f,,y,h):

Poltny k) = p[Vt2 + aR?/ VE(t)y,h] . (2.2)

Equations (2.1) are appropriate only for horizontal reflectors. Shah (1973) pro-
vided the following generalization of these equations for dipping reflectors:

Ah?

t? = t§ +
® 7 Vhuoltm)

+ O(R*) , (2.3a)

where t; denotes zero-offset time, £,, denotes migrated (two-way vertical) time, and

VNMO is defined by

‘m

1 ds v3(s)

Viuo(tn) = — (2.3b)
NMO( m.) to {[1 _)\21}2(5)]3/2
Zero-offset time {y and migrated time £,, are related by
tm
ds

tg = s 2.3c
Y .{‘[1 _)\21}2(3)]1/2 ( )

and A in both equations (2.3b) and (2.3¢) is defined by

sin8 1 Aty 1 k

= —— = — = —— 2.3d
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€ denotes the emergence angle of the zero-offset ray. As indicated by equation
(2.3d), this angle is related to the slope of the corresponding reflection in a zero-
offset section; and this slope, in turn, corresponds to a wavenumber-frequency ratio
after Fourier transformation. Figure 1 illustrates the raypaths corresponding to each

of the traveltimes ¢, £, and £, in equations (2.3).

FIG. 2.1. Several raypaths for depth-variable velocity. Each traveltime in equations
(2.83) is associated with a particular raypath. The time to propagate along the non-
zero-offset raypath is recording time ¢, the time to propagate along the zero-offset
raypath is £, and the vertical raypath corresponds to migrated (two-way vertical)
time £,,.

That equations (2.3) are correct in general is hardly obvious, but one can easily
verify that they are correct for two special cases. First, note that if

v(t,,) = v = constant, then

1 —A%u? = cos?@ ,
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and equation (2.3a) reduces to the dip-corrected NMO equation (1.3) of chapter |,
which is correct for constant-velocity. Second, if & =0, then £y =1¢, and
Vvuo(tn) = Vo(t,,); and equations (2.3) reduce to equations (2.1), which are correct
for horizontal reflectors. The proof of the general case may be found in Shah's

(1973) paper.

Using equation (2.1a) and dropping O(h*) terms, equation (2.3a) may be rewrit-

ten as a transformation from NMO time £, to zero-offset time £:

1 1
té = t2 + - 4p® (2.4)
° " VE (t,) Viuo(tn) |

Recalling from chapter | the Fourier transform of a zero-offset section,

Polwg,k ,h) = fdto ewotofdye““"ypo(to,y,h) ,

equation (2.4) may be used (as in chapter |) to change the integration over ¢, to an

integration over {,,; the result is
Polwgk,h) = [dt, A e fay ey p (2, 4.h) , (2.5a)
where

1 1

2.5b
sz(tn) V]&MO(tm) ( )

A = Altp,woh k) = [1 + 2
tn

4’7,2 ]1/2

(All velocity gradients have been ignored in deriving the Jacobian A~! of the change

of variable.) The inverse Fourier transform of Py(wg,k,h) yields the desired

poltoy.h) = Z;dewge_wotofdk e® P (wek,h) . (2.5¢)

Equations (2.5) transform NMO-corrected seismograms p,(t,,y,h), which are

defined by equation (2.2), to zero-offset seismograms pg(tg,y,h). As written,
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equations (2.5) would be difficult to implement, because of the complicated depen-
dence of Vyyo(f,,) on wy and k, and also because Vyy(t,,) depends on migrated
time {,, instead of on NMO time f,. The latter dependence should have been elim-
inated in the change of integration variable from ¢, to f,, but it remains because
equation (2.4) cannot be analytically solved for ¢y in terms of {,. The complicated
dependence on wg and k (actually k / wg) may be simplified by approximating equa-
tion (2.3b) for small A:

3\°
2

t.
Viwo(tn) = ——|VE(t,) +

; Vi) | + OO\Y) , (2.6)
]

where V, (£, ) is defined by
1™
Vi(ty) = t—fds vi(s) .
m
A similar approximation for £,

R
te = tml1 + A V§(tm)J + O\ , (2.7)

2
enables one to approximate equation (2.4) as

BVA(t
2N R - — ‘:( m) _ 1 |alape (2.8)
VE(tn)  VE(m) | |2VE(Ln) 2|

Like equation (2.4), equation (2.8) cannot be solved analytically for £g in terms
of {,; however, the dependence on {,, may be removed by using a truncated Taylor

series approximation

1 2(t,, —t,) V5(t,)

~ —

1
VE (tm) VE(ts) V3 (t)

where V;({,) denotes the derivative of the RMS velocity function. After discarding
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all 0(h*) and O()\*) terms, equation (2.8) becomes

Zarvms ——— 2" LAN?RR | 2.9)
2VE(t,) 2 Val(t,) (

n

Using equation (2.9) instead of equation (2.4) to define a change of variable from £

to £, yields equations (2.5), but with A({,,,wq,h,k) approximated by

(2.10)

BVE(L) 1 L Vi(ts) ]kW tE
A(t, ,wg,h,k) ~ {1 +[_._____
ns@0, k) [ |12VE(t,) 2 Veltn) | wft2

Equations (2.5a), (2.5c), and (2.10) provide a practical algorithm for applying
approximate DMO correction for depth-variable velocity. This algorithm will be
referred to simply as new, and the algorithm implied by equations (1.12) of chapter |

will be referred to as old. Table 2.1 summarizes both the old and new algorithms.

Old (Constant-Velocity) and New (Depth-Variable-Velocity) DMO

old Altp,wph k) = [1 ¢ K
c"Otn
BVE(t,) 1t Vi(tn) |k2n2 )V°
New At wph,k) = {1 + |[—2222 _ 2
(n st k) { 2Vi(t,) 2 Valtn) | wft2

Polwgkh) = fdt, A7 e [ay o= p, (1, y.0)
Both

:Tz Sdwge " fdk e®¥ Powok,h)

pO(tO’ysh) = a

TABLE 2.1. The difference between the old DMO algorithm and the new DMO algorithm
lies only in the definition of the function A(f,,wqk,k). The new algorithm approxi-
mately handles velocity variations with depth; the approximation is best when velo-
city gradients are small. Note that the new algorithm reduces to the old algorithm
when velocity is constant.
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An attractive feature of the new DMO algorithm is that it becomes equivalent to
the old algorithm when velocity is constant. Therefore, in spite of the numerous
approximations made in deriving the new algorithm, one can expect it to be quite
accurate, even for large offsets and steep dips, if velocity gradients are small. The
approximations may certainly be improved, but only at the cost of substantially com-
plicating the new algorithm. Given a computer program based on the old algorithm, the
modifications required to implement the new algorithm in Table 2.1 are trivial. What is
perhaps more important is that the computational cost of this new algorithm is essen-
tially no greater than that of the old algorithm, because the velocity-dependent fac-

tors required by the new algorithm need be computed only once.

2.2, Application to Synthetic Data

To test the new DMO algorithm, synthetic seismograms were computed assuming
a linear increase in velocity with depth for a subsurface containing only four point
scatterers. The synthetic zero-offset section is plotted in Figure 2.2a, and several
CMP gathers are plotted in Figure 2.2b. The goal in NMO and DMO processing is to
make the non-zero-offset traces in the CMP gathers resemble the zero-offset
traces. The zero-offset section may be thought of as an ideal CMP stack of NMO-

and DMO-corrected traces.

The synthetic traces are accurate only with respect to analytically computed
reflection times. No attempt has been made to model amplitude effects. The impor-

tant parameters used in computing the synthetic traces follow:

Surface velocity 1.5 km/sec
Velocity gradient 0.6 sec™!
CMP interval 0.033 km

Offset interval 0.133 km
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FIG. 2.2. (a) Synthetic zero-offset section and (b) five CMP gathers for a subsur-
face model consisting of four point scatterers. Velocity was assumed to increase
linearly with depth. Note in (b) the familiar (almost hyperbolic) moveout trajectories
at CMP O, where the scatterers are located; these trajectories are distorted at CMP
locations farther from the scatterers. The zero-offset section plotted in (a) may be
thought of as an ideal CMP stack, after NMO and DMO correction, of traces such as
those plotted in (b).
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Minimum offset O km
Maximum offset 3.325 km
Offsets per CMP 26

These parameters were chosen to approximate those for the recorded data of
chapter 1. Velocity as a function of depth is plotted in Figure 2.3a, and the

corresponding RMS velocity as a function of migrated time is plotted in Figure 2.3b.
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FIG. 2.3. (a) Velocity as a linear function of depth and (b) the corresponding RMS
velocity as a (nonlinear) function of migrated (two-way vertical) time. The surface
velocity (1.5 km/sec) and the velocity gradient (0.6 sec™!) were chosen to yield
RMS velocities roughly approximating those estimated for the recorded data of
chapter I.
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The synthetic traces were processed by first applying NMO correction, using
equation (2.2) and the RMS velocity function of Figure 2.3b. Then, after applying the
new DMO transformation of Tabie 2.1 to each constant-offset section, the CMP
stack was computed. This stack, which is plotted in Figure 2.4a, should be compared
with the zero-offset section (the ideal CMP stack) plotted in Figure 2.2a. (The CMP
stack in Figure 2.4a has been normalized by the number of offsets summed, so that a
direct comparison with Figure 2.2a is valid.) The most obvious difference between
the two stacks is in the amplitude of the earliest diffraction. The weakness of this
diffraction in Figure 2.4a is due to misalignment of the corresponding event in the
unstacked CMP gathers. Five such NMO- and DMO-corrected gathers are plotted in

Figure 2.4b.

To determine whether or not any advantage exists in using the new algorithm,
the above test was repeated using the old DMO algorithm. The resulting CMP stack,
plotted in Figure 2.5a, should be compared with that of Figure 2.4a. Note that the
limbs of the earliest diffractions are weaker in Figure 2.5a than in Figure 2.4a. Com-
parison of the five CMP gathers plotted in Figure 2.5b with those plotted in Figure
2.4b reveals that the limbs of the diffractions are less well alighed by the old DMO
algorithm than by the new algorithm. For this synthetic test, the new algorithm vields

a CMP stack significantly better than that obtained with the old algorithm.

The CMP stack computed using either the new or old DMO algorithm is signifi-
cantly better than that computed without any DMO correction. The CMP stack of
traces without DMO correction is plotted in Figure 2.6a, and five NMO-corrected
(only) CMP gathers are plotted in Figure 2.6b. NMO correction based on equation
(2.2) is sufficient for CMP O, where the zero-offset slope of the diffractions is zero.
For other CMPs, however, where the zero-offset slope is non-zero, DMO correction by
either the new or old algorithm is necessary to reduce the overcorrection of traces

seen in Figure 2.6b.
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FIG. 2.4. (a) CMP stack computed using the new DMO algorithm of Table 2.1 and (b)
five CMP gathers of unstacked, NMO- and DMO-corrected traces. The stack has
been normalized by the number of offsets summed to enable comparison with the
zero-offset section (ideal stack) plotted in Figure 2.2a. The quality of the stack
depends on the alignment of events in the unstacked traces. The alignment of early
events in Figure 2.4b is poor due to approximations made in deriving the new DMO
algorithm, but compare the stack plotted in Figure 2.4a with that in Figure 2.5a to see
the advantage in using the new algorithm instead of the old.
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FIG. 2.5. (a) CMP stack computed using the old DMO algorithm of Table 2.1 and (b)
five CMP gathers of unstacked, NMO- and DMO-corrected traces. The undercorrec-
tion of traces seen in the CMP gathers is due to the increase in velocity with depth,
which was ignored in deriving the old algorithm. Compare the CMP stack in (a) with
that plotted in Figure 2.4a; the latter was computed using the new DMO algorithm.
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FIG. 2.6. (a) CMP stack computed using only NMO correction and (b) five CMP gath-
ers of unstacked, NMO-corrected traces. NMO correction alone is sufficient only near
CMP O, where the slope of the diffractions (as measured on the zero-offset section)
is zero. DMO correction, by either the new or old algorithm, is required at other CMPs

(where the zero-offset slope is non-zero) to reduce the gross overcorrection of
traces seen in (b).
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2.3. Application to Seismic Data

If the DMO process is thought of as a first-order correction to conventional NMO
and stack processing, then the application to synthetic data in the previous section
suggests that the modification of DMO to approximately handle depth-variable velo-
city is only a second-order correction. The relative importance of these corrections
is further illustrated by application of the new DMO algorithm to the recorded data
discussed in chapter |. Plotted in Figure 2.7a is a CMP stack of the recorded data,
computed using the new DMO algorithm of Table 2.1. For comparison, the CMP stack
obtained using the old DMO algorithm is replotted (from Figure 1.10a of chapter 1) in
Figure 2.7b. Except for the differences in the DMO algorithms given in Table 2.1, the

processing used to obtain these CMP stacks was identical.

The stacks in Figures 2.7a and 2.7b are very similar. The difference, computed
by subtracting the stack in Figure 2.7b from that in Figure 2.7a, is plotted in Figure
2.7¢c. This difference should be compared with that plotted in Figure 1.10c of
chapter |, which is the difference between including and omitting (old) DMO correc-
tion in the processing sequence. Compared with the improvement obtained by DMO
correction in the first place, the additional improvement obtained by modifying the
DMO algorithm for depth-variable velocity appears insignificant for these recorded
data. Improvements in prestack processing were also insignificant. In particular,
velocity estimates obtained after applying the new DMO algorithm were virtually

identical to those obtained with the old algorithm.

2.4, Summary

DMO by Fourier transform may be easily modified to approximately handle
depth-variable velocity. The new DMO algorithm given in Table 2.1 represents a use-
ful compromise between computational efficiency and accuracy. By avoiding some of

the approximations made in deriving this algorithm, more accurate algorithms for
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FIG. 2.7¢c. Figure 2.7b subtracted from Figure 2.7a; i.e., the difference between old
and new DMO processing. This difference is insignificant relative to the difference
between including or omitting DMO processing. Figures 2.7a, 2.7b, and 2.7¢ are all
plotted with the same gain.
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depth-variable velocity may be obtained, at the cost of decreased efficiency.

In practice, the correction for depth-variable velocity, no matter how accurate,
is likely to be small compared with the total DMO correction. The relative significance
of these corrections was well illustrated by both synthetic and recorded data exam-
ples discussed in this chapter. Nevertheless, given any rough estimate of velocity as
a function of depth, the new DMO algorithm should be used instead of the old algo-

rithm.



