CHAPTER 6

Pseudo-P and Pseudo-S Waves in a Hexagonally Anisotropic Earth

Reflection seismic experiments usually contain a predominance of
unconverted compressional waves. However, three-component and shear-source
experiments are becoming more important, and these must be analyzed using the
elastic wave equation. Anisotropy is a large effect on shear wave profiles, so
anisotropic propagation effects should be included in any serious attempt at

downward continuing shear or converted wave fields.

The goal in this chapter will the development of a set of finite difference
operators for downward continuation. The discussion will be less rigorous than
that of chapter 4, the chapter that discussed downward continuation operators
for acoustic waves. Attention is paid in this development to stability,
compatibility with the acoustic operator in the isotropic limit, and faithfulness
vis-a-vis the Christoffel relations. Little attention is paid to operator

commutativity and proper modeling of wave amplitudes.

The eigenmodes of an anisotropic, elastic medium

An isotropic, elastic medium supports two shear waves and a compressional
wave. Similarly, an anisotropic medium supports a horizontally polarized shear
wave, a pseudo-shear wave, and a pseudo-compressional wave. Each of the
three waves has a dispersion relation that can be translated into a wave
equation. In this section, the notation required for a study of wave propagation in
an anisotropic medium is introduced. The medium is assumed to be hexagonally
anisotropic with a symmetry axis parallel to the z axis. The section ends with a

derivation of the Christoffel equations.



Elastic wave propagation analysis is plagued by subscripts. This is because
stress and strain are tensors of rank 2, and elastic stiffness is a tensor of rank
4. Following Auld, it is possible to reduce the number of subscripts by a factor of

two by agreeing on the convention

XxXx-+1 yy-»>2 2zz-3

yz»4 xz-5 xy->6

for the subscripts. Repeated indices will, as is usual, imply a summation unless
otherwise stated. The wave equation for the displacement field », a function of
the material stiffness ¢ and density p, is given by

VirCoxViu; = pofu,
in the reduced subscript scheme. The V symbol stands for one of two matrices in
this formalism depending on the order of its subscripts. In matrix notation, this

equation takes the form
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where 2c45 = €1,—C 2.

Two simplifying assumptions will be made so that we may be able to derive
three Christoffel equations. The first is that the experiment and medium are
independent of y. The second is that the SH, pseudo-P, and pseudo-S waves are
decoupled from one another. The justification for these two assumptions is that

they are almost universally applied with some degree of success in the
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processing of seismic reflection data. The assumption of y-invariance decouples
the SH wave from the other elastic waves that propagate in an anisotropic,
elastic earth. With a little effort it is possible to show that the y-invariant wave

equation for ¢ is

IDHc,, D, +Dffc 4D, ~po? 0 DforsD, +DlcyyD, ]
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= 0 (1)
0

The decoupling assumption justifies the treatment of the material parameters in
the matrix in equation (1) as if they were independent of position. In
implementing the decoupling assumption, derivatives with respect to the material
parameters in the matrix in equation (1) will be ignored. Later, the elastic
parameters will be placed in positions with respect to the various derivatives in a
way calculated to make the downward continuation equations in this chapter
compatible with the development of the acoustic downward continuation
equations of chapter 4. The wave equations for the three eigenmodes can be
found by formally setting the determinant of the matrix equal to zero. This

determinant can be factored into two pieces, equations (2) and (3),

DHc 44D, + DHcgeD, —po? = 0 @
[DHc |, D, +DHc D, —pe?  D¥e gD, +DHc,uD, |
D:}HC 1:iDz+D:£1c 11Dz DfCSBDz +D£{C44Dz —pe?

Equation (2) governs the propagation of the SH wave, the horizontally polarized

det = 0 (3)
shear mode The downward continuation equation for this mode can be derived by
following the development of chapter 4. Similarly, equation (3) governs the joint
propagation of pseudo-P and pseudo-S waves. The decoupling assumption

implies that equation (3) can be factored into two equations with negligible error,
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one factor for each of the propagation modes. The factorization is performed by
formally (ignoring restrictions on the commutativity of the operators) expanding
the determinant in equation (3), replacing D;H with —D,, and solving the resulting

quartic for Dzz. Saving the reader the grief associated with most of the worst of

the algebra,
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where the '+' and 's' signs should be chosen for pseudo-P and pseudo-S wave
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propagation, respectively. Differential equation (4) can be further simplified by
using the equality Df = -[), and ignoring derivatives of the elastic parameters.

The result is a simpler differential equation
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that lacks terms proportional to Df+D,. Differential equation (5) is still second
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order in 2. As in the acoustic case, a one-way wave equation that is first order in
depth is desirable. To get a partial differential equation with this form, take the
square root of the operators both sides of equation (5). As in the acoustic case,
there are many matrix square roots to choose from. Of these, only two square
roots interesting, corresponding to the two equations for the downward
continuation of upward and downward traveling wave fields. The equation for

downward continuing upgoing pseudo-S or pseudo-P waves is
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Equations for downwarding continuing downgoing waves can be had by

DED, —?

Casq
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substituting —D, for D, in equation (6).

The differential equation for downward continuing waves in an anisotropic
medium, equation (6), has two square roots that must be expanded. The trick is
to do the expansion so that the acoustic one-way wave equation is obtained in

the isotropic limit.

To get the isotropic limit, some restrictions need to be placed on the elastic
constants. The constraints on the elastic constants for isotropy are that
Cgg = C4q4qs C12 = C13, C1g = C11—2Cyy4, and c,; = c33. One result that follows

immediately from the constraint equations is 2c¢;,c,4, = €;,033—C 2 —2C,5C44.

Plugging these relations into equation (6) yields two isotropic wave equations
D, = p {2011044 DHD Cr1+Cyqy wzi“"‘u”cu P
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where, in general ¢ ,,>c ,,. With this last restriction, the inner square root and the

square in its argument are inverse operations. Thus, the isotropic wave equations

are
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Some fortunate cancellations occur at this juncture, yielding a set of two

isotropic wave equations. To get this cancellation, the sum of the »* terms under
the Inner square root radical in equation (6) must be made to interact with the o?

outside that radical. This is the first important clue in the search for anisotropic
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finite difference operators that will be compatible with acoustic operators in the
isotropic limit. A second is that the sum of the terms proportional to D,fIDz w®
under the inner radical must vanish identically in the isotropic limit. The same
conclusion holds for the sum of terms proportional to (DFD,)? under the inner

square root radical. The result is a set of two differential equations

D, = p 214 pup _ 2Ca o - (+ sign)
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where it is now seen that the '+' and '-' signs should be chosen for the downward
continuation of pseudo-P and pseudo-S waves, respectively. Fourth, an
indication of where the elastic constants should appear with respect to the
square root radicals and derivatives is found in the acoustic equation. That
equation sandwiches DFD, between two velocities and surrounds its square root
with square roots of the acoustic slownesses. Fifth, the square roots must have
two arguments that commute with one another. Finally, the operators involving

DED, should be positive semi-definite forms. We begin by symmetrizing
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The above expression for D, is still not acceptable since the operators under the

various square root radicals do not commute with one another. To make downward
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continuation operators for which the necessary commutivity properties hold, it will
prove convenient to pick a sign and specialize the discussion to cover pseudo-S

waves alone.

Downward continuation of pseudo-S waves

To get a downward continuation operator for an upgoing pseudo-S wave from
the last set of equations, just pick the '-' sign. Once this is done, the two square
roots can be consistently defined. The solution to the expansion problem lies in
rewriting the equation so that the square roots' arguments commute with one

another.

We begin with the inner square root by expanding it in a continued fraction.
Only the first approximant is kept in a use of the familiar 15-degree
approximation. Higher order approximants do not lead to theoretical difficulties,
but do cloud the algebra. A necessary first step is to pick the partial numerators
and partial denominators of the expansion. Remembering the need to make the
terms that are independent of D;HDz interact, it is natural to single out the (iw)*
term as the partial denominator of the expansion in the inner square root. Since it
is also desirable that this operator commute with the other terms beneath the
inner radical, the multiplier of (iw)* should be set equal to one. Factoring

(cg3—C44)%/ p? symmetrically and applying the 15-degree approximation yields
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On combining the (iw)? terms, the cy4 disappears. The (iw)? term, therefore, has

a coefficient equal to 2c¢,,/ p. If this coefficient is factored outside the square

root in the center, then two arguments of this square root will commute with one
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another. Just before the expansion
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Again expanding the square root, this time to infinite order, the partial numerator
is a complicated expression. In contrast, the partial denominator is equal to 2i¢,
as it is in the acoustic case. If an approximation higher than the 15-degree
fraction were to be used in the expansion for the inner square root of the

dispersion relation, then the partial numerators here would be even more complex.
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